In this study, numerical analysis of an embankment dam was carried out to predict settlement behavior with the use of the Mohr-Coulomb Model (MCM) and of the Hardening Soil Model (HSM). The MCM was applied to all material zones of the dam and the HSM was used for four major material zones that occupied significant volume. The settlement response of the dam was similar for MCM and HSM for three material zones (clay core, sandy gravel and random fill), each having a modulus of elasticity (MOE) in the range of 25000 to 50000kPa. However, it was found that after the end of the construction, the MCM showed about 57% and 50% more settlement as compared to HSM when MOE of sandy siltstone varied from 70000 to 125000kPa respectively. The results regarding the dam settlement predicted with the HSM are in agreement with the findings in previous studies.
For the settlement computation of an embankment dam, the soil stiffness is of great importance. Unfortunately, due to the lack of funds allocated for geotechnical investigation, stiffness parameters are commonly not evaluated as compared to strength properties. As a result, this may create hindrance in the use of advanced constitutive models such as Hardening Soil Model (HSM). In this study, the settlement with respect to depth and long term settlement of an embankment dam computed with Mohr-Coulomb Model (MCM) is compared with that of HSM applied to foundation soil only with limited data on stiffness. The results show that the MCM overestimated settlement in comparison with HSM. The settlement increment of MCM, in comparison with HSM, at the crest and at the depth of 120m was 53% and 82% respectively after the filling of the reservoir. The settlement computed with MCM and HSM were 2.9% and 1.35% of the dam height. It can be interpreted that the settlement predicted with MCM is unrealistically high due to the single constant value of modulus of elasticity (MOE), while the predictions of HSM are in agreement with the literature. In addition, the long term settlement computed using MCM is about 59% higher than that of HSM for the condition after the filling of the reservoir. This paper shows that the settlement of an embankment dam could be predicted reliably by using HSM even when a limited number of stiffness data is available.
This paper presents a stability parametric analysis of a 59m high embankment dam. The analysis was performed in order to evaluate the minimum values of strength parameters that satisfy the stability requirements of the dam. The parametric analysis was conducted for three main zones of the dam: upstream shell, core, and downstream shell, which consisted of sandy gravel, clay, and random fill respectively. The friction angles of these materials were gradually decreased in order to represent different soil conditions. It was observed that stability requirements for the end of construction and after the filling of the reservoir could be satisfied if friction angle values of the sandy gravel and the random fill are 34º and 32º, instead of 37º and 34º. However, the value of the core’s cohesion could be utilized as 30º without any reduction so that the dam could be safe after the filling of the reservoir. The results of this study could be beneficial to practicing engineers for the design of safe and economical embankment dams.
Numerical analysis for the safe rate determination of lowering of an embankment dam was performed in this study with the use of the finite element method. Coupled deformation and consolidation analysis were carried out for staged construction and drawdown of a 59m embankment dam for varying undrained shear strength of the clay core. The lowering of the reservoir was performed at different depths between two extreme scenarios, i.e. rapid lowering rate (1m/day) and slow lowering rate (0.1m/day). The reservoir of the dam was lowered to a depth from 10m to 55m in gradual increments. The results indicated that the safety of the dam was satisfactory when the reservoir was lowered at the quick rate for a depth of 10m, 20m, 30m respectively when the undrained shear strength of the clay core was taken as 20, 25 and 30kN/m2. Regarding the case of slow drawdown rate of the reservoir, it was found that the reservoir could be lowered up to a depth of 55m at a rate of 0.1m/day when the undrained strength of clay core was 25kN/m2. The stability of the dam was also found satisfactory even though the reservoir was lowered at a rate of 0.25m/day for a depth of 55m when the undrained shear strength of clay core was 30kN/m2.
The settlement calculation of a multi-story building is a challenging task due to the variation of soil properties and the use of an appropriate constitutive model for the reliable representation of soils’ stress-strain behaviors. In this study, the settlement response of a multi-story building was calculated with the simple Mohr-Coulomb Model (MCM) and the Hardening Soil Model (HSM). The effect of soil modulus of elasticity using both models was investigated on the overall settlement response of the building. Results indicated that MCM overestimated immediate settlement in a range of 50 to 65% compared to HSM. The settlement response of the building calculated with both models was within the allowable range. The results of this study can be helpful for geotechnical engineers working on reliable predictions of the settlement of multi-story buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.