The physiological role of the multidrug resistance P-glycoprotein (P- gp), which is expressed by normal human T lymphocytes, is still largely unknown. To investigate whether or not P-gp is involved in the transport of cytokines, peripheral blood lymphocytes were stimulated with phytohemagglutinin (PHA) in the absence or presence of P-gp inhibitors, and concentrations of cytokines (interleukin-2 [IL-2], IL- 4, IL-6, interferon-gamma [IFN-gamma]) in the supernatants of these cultures were quantitated by enzyme-linked immunosorbent assay. P-gp inhibitors included verapamil (Ver), tamoxifen (Tmx), and the P-gp specific monoclonal antibody UIC2. Release of IL-2 was significantly suppressed by these inhibitors at concentrations that were also effective in blocking efflux of Rhodamine-123 from normal T lymphocytes. IL-2 mRNA expression in lymphocytes was not different between PHA control and the cultures with P-gp inhibitors. Ver and Tmx did not interfere with T-cell activation as determined by CD25 and CD69 expression. In a nonhematological model, the P-gp expressing HCT-8 adenocarcinoma cell line, exogenously added IL-2 was shown to exert an inhibitory effect on P-gp mediated Rhodamine-123 efflux. In addition, transepithelial transport of IL-2 by electrophysiologically tight and polarized HCT-8 monolayers was examined. A time-dependent flux of IL-2 across dense monolayers, which was partially inhibited by Ver, was observed. We also investigated whether or not P-gp inhibitors suppressed release of other cytokines produced by activated T cells (IL- 4, IL-6, IFN-gamma). Release of IL-4 and IFN-gamma was significantly inhibited by Ver, Tmx, and UIC2; however, release of IL-6 remained unaffected. These data show P-gp mediated transmembrane flux of IL-2 in T lymphocytes and HCT-8 cells. We conclude that P-gp participates in the transport of cytokines (IL-2, IL-4, and IFN-gamma) in normal peripheral T lymphocytes.
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein that promotes angiogenesis and vascular hyperpermeability and interacts with two receptors, fms-like tyrosine kinase (Flt-1) and kinase domain-containing region (KDR). In situ localization in the pregnant human uterus revealed that VEGF mRNA is expressed primarily by the maternal decidua, whereas the receptor Flt-1 is expressed primarily by chorionic vascular endothelium and trophoblast cells-in particular, the extravillous trophoblast (EVT). We examined whether the mRNA and protein of VEGF and its receptors are expressed by invasive human first-trimester EVT cells propagated in culture and whether VEGF influences EVT cell proliferation, migration, and invasiveness. Proliferation was assessed by the uptake of [3H]thymidine. Invasion and migration across transwells were assessed by the degree of cellular transgression of a Millipore membrane coated, respectively, with and without Matrigel. Results of immunocytochemical and reverse transcription-polymerase chain reaction analysis revealed that both protein and mRNA of VEGF, Flt-1, and KDR were expressed by cultured normal EVT cells as well as their premalignant derivative produced by SV-40 Tag-immortalization, and BeWo choriocarcinoma cells. Under serum-free conditions, exogenous VEGF121 (the non-heparin-binding isoform) stimulated proliferation of all three cell lines in a concentration-dependent manner. The effects were abolished with a VEGF-neutralizing antibody. The same stimulatory effects on EVT cells were also seen with exogenous VEGF165 (a heparin-binding isoform), only after a cleaving of the heparin-binding domain with plasmin or a blocking of heparin binding sites with excess soluble heparan sulphate proteoglycans (HSPGs), suggesting a regulatory role of HSPGs. However, VEGF121 and VEGF165 (with and without the HSPG pretreatment) had no effect on normal EVT cell migration or invasiveness. Thus, VEGF may provide a dual role in angiogenesis and EVT cell proliferation during normal placental development.
Colony stimulating factor (CSF)-1 has been localized in a variety of tissues and shown to influence proliferation and differentiation of numerous cell types. Messenger RNA and protein products of CSF-1 and its receptor (c-fms) have been identified in the human placenta and decidua. We examined whether CSF-1 and c-fms mRNA and protein are expressed by normal human first trimester invasive extravillous trophoblast (EVT) cells propagated in culture and whether CSF-1 influences proliferation and/or invasion of these cells. CSF-1 mRNA and protein expression was determined by RT-PCR and immunofluorescence microscopy. Proliferation was assessed by the cellular uptake of tritiated thymidine and invasion was evaluated by Matrigel invasion assay as well as Northern blot analysis of mRNA expression for invasion-associated enzymes and their inhibitors. Results revealed that normal invasive EVT cells in culture express both CSF-1 and c-fms mRNA and protein. Under serum-free conditions, exogenous CSF-1 greatly stimulated the proliferation of these cells. CSF-1 neutralizing and c-fms receptor blocking antibody (Ab) each abolished the growth stimulatory effects of CSF-1, indicating that CSF-1 and c-fms interaction was responsible for these effects. In fact, c-fms Ab alone reduced proliferation to below background levels. While exogenous CSF-1 failed to influence EVT cell invasiveness, Northern blot analysis of mRNA indicated a slight upregulation of the invasion-associated enzyme 72 kDa type IV collagenase as well as its natural inhibitor tissue inhibitor of metalloprotease (TIMP)-1, so that the balance between the two remained unaltered. These findings suggest that CSF-1 may represent an autocrine (and possibly paracrine) growth stimulatory factor for the invasive trophoblast cells in situ with no net effect on their invasiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.