It is widely known that the liver is a central organ in lipogenesis, gluconeogenesis and cholesterol metabolism. However, over the last decades, a variety of pathological conditions highlighted the importance of metabolic functions within the diseased liver. As observed in Western societies, an increase in the prevalence of obesity and the metabolic syndrome promotes pathophysiological changes that cause non-alcoholic fatty liver disease (NAFLD). NAFLD increases the susceptibility of the liver to acute liver injury and may lead to cirrhosis and hepatocellular cancer. Alterations in insulin response, β-oxidation, lipid storage and transport, autophagy and an imbalance in chemokines and nuclear receptor signaling are held accountable for these changes. Furthermore, recent studies revealed a role for lipid accumulation in inflammation and ER stress in the clinical context of liver regeneration and hepatic carcinogenesis. This review focuses on novel findings related to nuclear receptor signaling - including the vitamin D receptor and the liver receptor homolog 1 - in hepatic lipid and glucose uptake, storage and metabolism in the clinical context of NAFLD, liver regeneration, and cancer.
Obesity and type 2 diabetes are associated with a state of abnormal inflammatory response. While this correlation has also been recognized in the clinical setting, its molecular basis and physiological significance are not yet fully understood. Studies in recent years have provided important insights into this curious phenomenon. The state of chronic inflammation typical of obesity and type 2 diabetes occurs at metabolically relevant sites, such as the liver, muscle, and most interestingly, adipose tissues. The biological relevance of the activation of inflammatory pathways became evident upon the demonstration that interference with these pathways improve or alleviate insulin resistance. The abnormal production of tumor necrosis factor alpha (TNF-a) in obesity is a paradigm for the metabolic significance of this inflammatory response. When TNF-a activity is blocked in obesity, either biochemically or genetically, the result is improved insulin sensitivity. Studies have since focused on the identification of additional inflammatory mediators critical in metabolic control and on understanding the molecular mechanisms by which inflammatory pathways are coupled to metabolic control. Recent years have seen a critical progress in this respect by the identification of several downstream mediators and signaling pathways, which provide the crosstalk between inflammatory and metabolic signaling. These include the discovery of c-Jun N-terminal kinase (JNK) and Ikappabkinase (IkK) as critical regulators of insulin action activated by TNF-a and other inflammatory and stress signals, and the identification of potential targets. Here, the role of the JNK pathway in insulin receptor signaling, the impact of blocking this pathway in obesity and the mechanisms underlying JNK-induced insulin resistance will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.