The electronic structure of a genuine paramagnetic des-oxo Mo(V) catalytic intermediate in the reaction of dimethyl sulfoxide reductase (DMSOR) with (CH3)3NO has been probed by EPR, electronic absorption and MCD spectroscopies. EPR spectroscopy reveals rhombic g- and A-tensors that indicate a low-symmetry geometry for this intermediate and a singly occupied molecular orbital (SOMO) that is dominantly metal centered. The excited state spectroscopic data were interpreted in the context of electronic structure calculations, and this has resulted in a full assignment of the observed magnetic circular dichroism (MCD) and electronic absorption bands, a detailed understanding of the metal-ligand bonding scheme, and an evaluation of the Mo(V) coordination geometry and Mo(V)-Sdithiolene covalency as it pertains to the stability of the intermediate and electron transfer regeneration. Finally, the relationship between des-oxo Mo(V) and des-oxo Mo(IV) geometric and electronic structures is discussed relative to the reaction coordinate in members of the DMSOR enzyme family.
A series of octahedral dioxomolybdenum(VI) complexes of the type [MoO(2)L(2)] {L = 4-Ar-pent-2-en-ol; L(i-Pr2Ph) with Ar = 2,6-diisopropylphenyl (1); L(Me2Ph) with Ar = 2,6-dimethylphenyl (2), L(MePh) with Ar = 2-methylphenyl (3) and with Ar = phenyl (4)} and dioxotungsten(VI) compounds [WO(2)L(2)] {L(i-Pr2Ph) (5); L(Me2Ph) (6) and L(MePh) (7)} with Schiff bases have been synthesized as models for oxotransferases. Spectroscopic characterization in solution shows with the sterically encumbered ligands L(i-Pr2)Ph and L(Me2)Ph isomerically pure products whereas the ligand with only one substituent in ortho position at the aromatic ring L(MePh) revealed a dynamic mixture of three isomers as confirmed by variable temperature NMR spectroscopy. Single crystal X-ray diffraction analyses of compounds 1, 2, and 4 and showed them to be in the N,N-trans conformation consistent with the larger steric demand at nitrogen. Oxygen atom transfer (OAT) properties towards trimethylphosphine were investigated leading to the isolation of two mononuclear molybdenum(IV) compounds [MoO(PMe(3))(L(Me2Ph))(2)] (8) and [MoO(PMe(3))(L(MePh))(2)] (9) as confirmed by spectroscopic and crystallographic means. The kinetics of OAT between complex [MoO(2)(L(Me2Ph))(2)] (2) and PMe(3) was investigated by UV/Vis spectroscopy under pseudo-first-order conditions revealing single-step reactions with Eyring values of DeltaH(double dagger) = +60.79 kJ mol(-1) and DeltaS(double dagger) = -112 J mol(-1) K(-1) and a first-order dependence of phosphine consistent with a slow nucleophilic attack of the phosphine showing the octahedral geometries of this system to be unfavorable for OAT. Compound 1 showed no OAT reactivity towards PMe(3) emphasizing the influence of sterical properties. Furthermore, the reactivity of the reduced compounds [MoO(PMe(3))(L(Me2Ph))(2)] (8) and [MoO(PMe(3))(L(MePh))(2)] (9) towards molecular oxygen was investigated leading, in the case of 8, to the substitution of PMe(3) by O(2) under formation of the peroxo compound [MoO(O(2))(L(Me2Ph))(2)] (10). In contrast, the analogous reaction employing 9 led to oxidation forming the dioxo compound [MoO(2)(L(MePh))(2)] (3).
Substitution reactions of rhenium(V) oxo precursors [ReOCl3(PPh3)2] or [NBu4][ReOCl4] with the bidentate acetylacetone-derived ketoamine ligands APOH = 4-anilino-3-penten-2-one, DPOH = 4-[2,6-dimethylanilino]-3-penten-2-one, and MTPOH = 4-[2-(methylthio)anilino]-3-penten-2-one gave the complexes [ReO(APO)Cl2(PPh3)] (1), [ReO(DPO)Cl2(PPh3)] (2), and [NBu4][ReOLCl3] (3, L = APO; 4, L = DPO; 5, L = MTPO), respectively. All complexes exhibit only one ketoamino chelate, independent of the amount of ligand added to the rhenium precursors. The complexes were characterized by 1H and 13C NMR spectroscopy. X-ray crystal structures of the complexes 1, 2, 4, and 5, including that of MTPOH, were determined, revealing the trans position of the two oxygen atoms and the trans-Cl,Cl conformation in 1 and 2, in contrast to most other rhenium complexes of this type where the cis-Cl,Cl conformation is observed. Coordination of the potentially tridentate ligand MTPOH in 5 is bidentate with a dangling thioether substituent. Compound 2 shows catalytic activity in the oxidation of cis-cyclooctene with tert-butylhydroperoxide.
Molybdenum(IV) monooxo compound that contains bis(beta-ketiminato) ligands activates molecular oxygen forming a molybdenum(VI) monooxo peroxo compound, representing a new entry into molybdenum peroxo derivatives.
Treatment of [MoO(N-t-Bu)Cl(2)(dme)] (dme = dimethoxyethane) with 2 equiv of the potassium salts of Schiff base ligands of the type KArNC(CH(3))CHC(CH(3))O afforded oxo imido molybdenum(VI) compounds [MoO(N-t-Bu)L(2)] {1, with Ar = phenyl (L(Ph)), 2 with Ar = 2-tolyl (L(MePh)), 3 with Ar = 2,6-dimethylphenyl (L(Me2Ph)) and 4 with Ar = 2,6-diisopropylphenyl (L(iPr2Ph))}. We have also prepared related bisimido complexes [Mo(N-t-Bu)(2)L(2) (5 with L = L(Ph), 6 with L = L(MePh), and 7 with L = L(Me2Ph)) by treatment of [Mo(N-t-Bu)(2)Cl(2)(dme)] with 2 equiv of the potassium salt of the respective ligand. 1, 3, 5, and 6 were characterized via single crystal X-ray diffraction. The oxo imido complexes exhibit oxygen atom transfer (OAT) reactivity toward trimethyl phosphine. Kinetic data were obtained for 1 and 3 by UV/vis spectroscopy revealing decreased OAT reactivity in comparison to related dioxo complexes with the same Schiff base ligands and decreased reactivity of 1 versus 3. Cyclic voltammetry was used to probe the electronic situation at the molybdenum center showing reversible reduction waves for 3 and [MoO(2)(L(Me2Ph))(2)] at comparable potentials while 1 exhibits a significant lower potential. Density functional theory (DFT) calculations showed a higher electron density on oxygen in the oxo imido complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.