This paper aims at offering an insight into the dynamical behaviors of incommensurate fractionalorder singularly perturbed van der Pol oscillators subjected to constant forcing, especially when the forcing is close to Andronov-Hopf bifurcation points. These bifurcation points are predicted thanks to the theorem on stability of incommensurate fractionalorder systems, as functions of the forcing and fractional derivative orders. When the forcing is chosen near Andronov-Hopf bifurcation, the dynamics of fractional-order systems show a static-looking transient regime whose length increases exponentially with the closeness to the bifurcation point. This peculiar phenomenon is not common in numerical simulation of dynamical systems. We show that this quasi-static transient behavior is due to the combine action of the slow passage effect at folded saddle-node singularity and fractional derivation memory effect on the slow flow around this singularity; this forces the system to remain for a long time in the vicinity of its equilibrium point, though unstable. The system frees oneself from this quasi-static transient state by spiraling before entering relaxation oscillation. Such a situation results in mixed mode oscillations in the oscillatory regime. One obtains mixed mode oscillations from a very simple system: A two-variable system subjected to constant forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.