Ocean modellers use bathymetric datasets like ETOPO5 and ETOPO2 to represent the ocean bottom topography. The former dataset is based on digitization of depth contours greater than 200 m, and the latter is based on satellite altimetry. Hence, they are not always reliable in shallow regions. An improved shelf bathymetry for the Indian Ocean region (20 • E to 112 • E and 38 • S to 32 • N) is derived by digitizing the depth contours and sounding depths less than 200 m from the hydrographic charts published by the National Hydrographic Office, India. The digitized data are then gridded and used to modify the existing ETOPO5 and ETOPO2 datasets for depths less than 200 m. In combining the digitized data with the original ETOPO dataset, we apply an appropriate blending technique near the 200 m contour to ensure smooth merging of the datasets. Using the modified ETOPO5, we demonstrate that the original ETOPO5 is indeed inaccurate in depths of less than 200 m and has features that are not actually present on the ocean bottom. Though the present version of ETOPO2 (ETOPO2v2) is a better bathymetry compared to its earlier versions, there are still differences between the ETOPO2v2 and the modified ETOPO2. We assess the improvements of these bathymetric grids with the performance of existing models of tidal circulation and tsunami propagation.
Hydrographic observations in the eastern Arabian Sea (EAS) during summer monsoon 2002 (during the first phase of the Arabian Sea Monsoon Experiment (ARMEX)) include two approximately fortnight-long CTD time series. A barrier layer was observed occasionally during the two time series. These ephemeral barrier layers were caused by in situ rainfall, and by advection of low-salinity (high-salinity) waters at the surface (below the surface mixed layer). These barrier layers were advected away from the source region by the West India Coastal Current and had no discernible effect on the sea surface temperature. The three high-salinity water masses, the Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW), and the Arabian Sea Salinity Minimum also exhibited intermittency: they appeared and disappeared during the time series. The concentration of the ASHSW, PGW, and RSW decreased equatorward, and that of the RSW also decreased offshore. The observations suggest that the RSW is advected equatorward along the continental slope off the Indian west coast.
This paper describes the hydrographic observations in the southeastern Arabian Sea (SEAS) during two cruises carried out in March-June 2003 as part of the Arabian Sea Monsoon Experiment. The surface hydrography during March-April was dominated by the intrusion of low-salinity waters from the south; during May-June, the low-salinity waters were beginning to be replaced by the highsalinity waters from the north. There was considerable mixing at the bottom of the surface mixed layer, leading to interleaving of low-salinity and high-salinity layers. The flow paths constructed following the spatial patterns of salinity along the sections mimic those inferred from numerical models. Time-series measurements showed the presence of Persian Gulf and Red Sea Waters in the SEAS to be intermittent during both cruises: they appeared and disappeared during both the fortnight-long time series.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼ 20 mg/l, 5 mg/l, 19 mg/l . SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June-September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1-5.6 ms −1 ) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February-April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2-3.7 ms −1 ) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition.
The spatial variability of the structure of the lower troposphere over the northwestern Indian Ocean for the period 12th July to 2nd September, 1983 has been studied using upper air data collected during the first scientific cruise of ORV 'Sagar Kanya'.An analysis of thermodynamic structure and kinematics of the marine boundary layer for different zonal and meridional sections revealed the following features: (a) Temperature and humidity inversions were generally absent over the study area except over a few locations in the western region', (b) Largescale subsidence was found over the central equatorial Indian Ocean; (c) The convective activity over the western Indian Ocean was found to be moderately suppressed as compared to the eastern region; (d) The zonal and meridional components of winds along the equator and 10 ° N zonal section exhibited a mirror-image-like distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.