Electroporation can deliver exogenous molecules like drugs and genes into cells by pulsed electric fields through a temporary increase in cell membrane permeability. This effect is being used for the treatment of cancer by intratumoral injection of low dosage of an otherwise marginally effective chemotherapeutic drug, bleomycin. Application of a pulsed electric field results in substantially higher uptake of the drug and enhanced killing of the cancer cells than is possible by conventional methods. The MedPulser, a new treatment system for local electroporation therapy (EPT) of head and neck tumors was developed and is described in this paper. EPT with bleomycin has been found to be very effective in killing cancer cells in vitro, in mouse tumor xenografts in vivo, and in tumors in humans. Ten head and neck cancer patients with recurring or unresponsive tumors were enrolled in a Phase I/II clinical trial. Treatment of the entire tumor mass in each of eight patients resulted in five complete responses confirmed by biopsy and MRI, and three partial responses (> or = 50% shrinkage). Two additional patients who received partial treatment of their tumor mass had local response where treated, but no overall lesion remission. Duration of the complete responses ranges from 2-10 months to date. All patients tolerated the treatment well with no significant local or systemic adverse effects.
Many conventional chemotherapeutic drugs, as well as DNA for cancer gene therapy, require efficient access to the cell interior to be effective. The cell membrane is a formidable barrier to many of these drugs, including therapeutic DNA constructs. Electropermeabilization (EP, often used synonymously with "electroporation") has become a useful method to temporarily increase the permeability of the cell membrane, allowing a broad variety of molecules efficient access to the cell interior. EP is achieved by the application of short electrical pulses of relatively high local field strength to the target tissue of choice. In cancer therapy, EP can be applied in vivo directly to the tumor to be treated, in order to enhance intracellular uptake of drugs or DNA. Alternatively, EP can be used to deliver DNA into cells of healthy tissue to achieve longer-lasting expression of cancer-suppressing genes. In addition, EP has been used in ex vivo therapeutic approaches for the transfection of a variety of cells in suspension. In this paper, we communicate results related to the development of a treatment for squamous cell carcinomas of the head and neck, using electropermeabilization to deliver the drug bleomycin in vivo directly into the tumor cells. This drug, which is not particularly effective as a conventional therapeutic, becomes highly potent when the intracellular concentration is enhanced by EP treatment. In animal model experiments we found a drug dose of 1 U/cm(3) tumor tissue (delivered in 0.25 mL of an aqueous solution/cm3 tumor tissue) and an electrical field strength of 750 V/cm or higher to be optimal for the treatment of human squamous cell tumors grown subcutaneously in mice. Within 24-48 hours, the majority of tumor cells are rapidly destroyed by this bleomycin-electroporation therapy (B-EPT). This raises the concern that healthy tissue may be similarly affected. In studies with large animals we showed that normal muscle and skin tissue, normal tissue surrounding major blood vessels and nerves, as well as healthy blood vessels and nerves themselves, are much less affected than tumor tissue. Normal tissues did show acute, focal, and transitory effects after treatment, but these effects are relatively minor under standard treatment conditions. The severity of these effects increases with the number of electric pulse cycles and applied voltage. The observed histological changes resolved 20 to 40 days after treatment or sooner, even after excessive EP treatment. Thus, B-EPT is distinct from other ablative therapies, such as thermal, cryo, or photodynamic ablation, which equally affect healthy and tumor tissue. In comparison to surgical or radiation therapy, B-EPT also has potential as a tissue-sparing and function-preserving therapy. In clinical studies with over 50 late stage head and neck cancer patients, objective tumor response rates of 55-58%, and complete tumor response rates of 19-30% have been achieved.
The goal of this study was to collect a comprehensive set of data that related lethal effects of electric fields to the duration of the pulse. Electric pulses of different strengths and durations were applied to a suspension of HEp-2 cells (epidermoid carcinoma of the human larynx) using a six-needle electrode array connected through an autoswitcher to a square wave generator. Pulse durations varied from 50 micros to 16 ms and the ranges of electric field were adjusted for each duration to capture cell viabilities between 0% and 100%. After pulsation, cells were incubated for 44 h at 37 degrees C, and their viability was measured spectrophotometrically using an XTT assay. For each pulse duration (d), viability data were used to determine the electric field that killed half of the cells (E50). When plotted on logarithmic axes, E50 vs. d was a straight line, leading to a hyperbolic relationship: E50=const/d. This relationship suggests that the total charge delivered by the pulse is the decisive factor in killing HEp-2 cells.
Electroporation therapy (EPT), also known as electrochemo-therapy (ECT), of a poorly differentiated human pancreatic carcinoma (Panc-3) implanted subcutaneously in nude mice significantly enhanced the cytotoxicity of bleomycin to tumor cells. A single treatment of intratumoral injection of bleomycin followed by 6 × 99 μs square wave electrical pulses of 1370 V resulted in complete tumor regression in 68% and partial regression (>80%) in 20% of the treated mice on day 28 following treatment. No palpable tumor was observed in 64% of the mice even 120 days after treatment. Histological studies of tissue samples taken from tumor sites 120 days after treatment in the D+E+ group showed complete absence of tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.