Although much is now known with regard to the processes of mammalian mitochondrial gene expression, relatively little is known concerning the quantitative regulation of this pathway in response to hormones or other physiological stimuli. This has been caused, in large part, by the lack of adequate assay systems in which such processes can be meaningfully measured. The purpose of this and the companion paper [E. E. McKee, B. L. Grier, G. S. Thompson, A. C. F. Leung, and J. D. McCourt. Am. J. Physiol. 258 [Endocrinol. Metab. 21):E503-E510, 1990] is to describe a system in which the quantitative regulation of mitochondrial protein synthesis in rat heart can be investigated. In this report the conditions for mitochondrial isolation and labeling are described, and the importance of isolating intact, tightly coupled mitochondria in obtaining high and reliable rates of protein synthesis is demonstrated. The highest levels of protein synthesis are obtained in mitochondria isolated from hearts perfused and homogenized in the presence of subtilisin, conditions in which the fastest rates of state 3 respiration and the highest respiratory control ratios are also observed. Analysis of the free amino acid pools indicates that isolated heart mitochondria have a negligible level of endogenous methionine as well as other amino acids. As a result, the concentration and specific radioactivity of the [35S]methionine pool serving protein synthesis could be easily determined. Optimal translation occurred at 30 degrees C at a pH of 7.0-7.2 and required the addition of methionine (20 microM), the other 19 amino acids (0.1 mM each), K+ (60-90 mM), Cl- (30-90 mM), Mg2+ (0.5-5 mM), and bovine serum albumin (1 mg/ml). As shown in the companion paper, adenine nucleotide (0.5-4.0 mM) and oxidizable substrate (10-20 mM glutamate) are also required for isolated heart mitochondrial protein synthesis. Analysis of labeled mitochondrial translation products demonstrated that bona fide mitochondrial peptides were synthesized.
Although much is now known with regard to the processes of mammalian mitochondrial gene expression, relatively little is known concerning the quantitative regulation of this pathway in response to hormones or other physiological stimuli. In this paper the potential coupling of mitochondrial metabolism to mitochondrial protein synthesis was investigated and the concentration of nucleotides and substrates for optimal translation in isolated rat heart mitochondria was determined. It was demonstrated that optimal isolated heart mitochondrial protein synthesis required the presence of an oxidizable substrate. Of the substrates tested, glutamate (20 mM) supported translation best followed by malate, succinate, and alpha-ketoglutarate, whereas pyruvate supported synthesis poorly. Unlike other recent mammalian mitochondrial systems, the presence of an oxidizable substrate was required for translation even in the presence of medium ATP and an exogenous energy-generating system. Mitochondrial translation also required the presence of adenine nucleotide that could be added as ADP or ATP; however, ATP added above 0.5 mM became progressively inhibitory. As a result, synthesis was supported significantly better by ATP synthesized by the system from added ADP, than by ATP added directly to the system. However, if the phosphorylation of ADP was prevented by limiting the phosphate concentration, ADP itself strongly inhibited mitochondrial protein synthesis. This inhibition appeared to be closely related to the energy charge of the system rather than to absolute levels of ADP, indicating for the first time that mitochondrial translation, like its cytoplasmic counterpart is regulated by energy charge. Last, this system did not require the inhibition of guanine nucleotide or exogenous energy-generating systems.(ABSTRACT TRUNCATED AT 250 WORDS)
Pyruvate dehydrogenase complex activity (PDHC) measured by CO2 release isotopic assay has generally been much lower than activity measured by the spectrophotometric arylamine acetyltransferase assay (ArAT). Decarboxylation of [1-14C]pyruvate was measured in osmotically shocked rat brain cortical mitochondria. Activity is dependent on the concentration of the substrate pyruvate. Activity of 74.6 units +/- 12.3 SD (n = 22) was observed at 4 mM pyruvate (1 unit = 1 nmol pyruvate decarboxylated/min/mg protein). Activity was dependent on added NAD, CoA, and thiamine pyrophosphate, implying increased mitochondrial permeability after osmotic shock. Freeze/thaw with sonication of the mitochondrial preparation reduced PDHC activity to 11.5 units +/- 3.0 SD (n = 4). Oxaloacetate produced a marked stimulation of activity. The optimal assay contained 3 mM oxaloacetate, and without oxaloacetate activity fell to 15.4 units +/- 9.9 SD (n = 8). These studies highlight the importance of optimal substrate concentrations in the CO2 release isotopic PDHC method. Higher PDHC activity is found with intact mitochondria and thus activity values should be interpreted in the light of the presence or absence of intact mitochondria in individual preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.