This paper is an overview of the work being performed by the ISO committee TC184/SC2 "Robots and Robotic Devices". SC2 is developing safety standards for robotic applications in personal and medical care, as well as revising existing industrial robot standards with requirements for new applications. A key driver of the new standards is the need for safety guidelines for human robot interaction, as the new applications involve much more extensive HRI behavior than previous generations of industrial robots. The paper summarizes the content of a revision to ISO 10218 for industrial robots, the development of a new standard ISO/NP 13482 for service robots in personal care, and discusses future work in standards for medical care robots and other areas.
With the recent progress in personal care robots, interest in wearable exoskeletons has been increasing due to the demand for assistive technologies generally and specifically to meet the concerns in the increasing ageing society. Despite this global trend, research focus has been on load augmentation for soldiers/workers, assisting trauma patients, paraplegics, spinal cord injured persons and for rehabilitation purposes. Barring the military-focused activities, most of the work to date has focused on medical applications. However, there is a need to shift attention towards the growing needs of elderly people, that is, by realizing assistive exoskeletons that can help them to stay independent and maintain a good quality of life. Therefore, the present article covers the rapidly evolving area of wearable exoskeletons in a holistic manner, for both medical and non-medical applications, so that relevant current developments and future issues can be addressed; this includes how the physical assistance/rehabilitation/compensation can be provided to supplement capabilities in a natural manner. Regulatory guidelines, important for realizing new markets for these emerging technologies, are also explored in this work. For these, emerging international safety requirements are presented for non-medical and medical exoskeleton applications, so that the central requirement of close human-robot interactions can be adequately addressed for the intended tasks to be carried out. An example case study on developing and commercializing wearable exoskeletons to help support living activities of healthy elderly persons is presented to highlight the main issues in non-medical mobility exoskeletons. This also paves the way for the potential future trends to use exoskeletons as physical assistant robots, as covered by the recently published safety standard ISO 13482, to help elderly people perform their activities of daily living.
Although most species are sensitive to various chemicals, and olfactory skills such as search strategies for finding nutritious substance are seemingly simple, these basic skills are still not fully understood. Traditionally, chemotaxis has been considered as the fundamental chemosensory navigational mechanism for most species. Previous studies have demonstrated, however, that biased random walk is the more fundamental navigational strategy in various types of diffusion fields. Biased random walk is a robust and slow search process, but it has been shown that its efficiency can be enhanced if it is combined with chemotaxis. The present article summarizes previous findings of the authors in olfactory navigation and extends the work to searching in dynamic flow fields, including turbulence. In addition, a cooperative, multi-agent search method has been investigated and shown to be successful in enhancing search efficiency. The significance of these findings is discussed in the context of future plans to implement these strategies in experimental mobile robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.