The filamentary nature and dynamics of edge-localized modes (ELMs) in the KSTAR high-confinement mode plasmas have been visualized in 2D via electron cyclotron emission imaging. The ELM filaments rotating with a net poloidal velocity are observed to evolve in three distinctive stages: initial linear growth, interim quasisteady state, and final crash. The crash is initiated by a narrow fingerlike perturbation growing radially from a poloidally elongated filament. The filament bursts through this finger, leading to fast and collective heat convection from the edge region into the scrape-off layer, i.e., ELM crash.
The ECE imaging ͑ECEI͒ diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport ͓H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 ͑2006͔͒. An improved ECEI system capable of visualizing both high-and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication Citation for published version (APA):Tobias, B. J., Domier, C. W., Liang, T., Kong, X., Yu, L., Yun, G. S., ... Luhmann, N. C. (2010). Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data. Review of Scientific Instruments, 81(10), 10D928-1/4. DOI: 10.1063/1.3460456 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The temporal evolution of edge-localized modes (ELMs) has been studied using a 2-D electron cyclotron emission imaging system in the KSTAR tokamak. The ELMs are observed to evolve in three distinctive stages: the initial linear growth of multiple filamentary structures having a net poloidal rotation, the interim state of regularly spaced saturated filaments, and the final crash through a short transient phase characterized by abrupt changes in the relative amplitudes and distance among filaments. The crash phase, typically consisted of multiple bursts of a single filament, involves a complex dynamics, poloidal elongation of the bursting filament, development of a fingerlike bulge, and fast localized burst through the finger. Substantial alterations of the ELM dynamics, such as mode number, poloidal rotation, and crash time scale, have been observed under external magnetic perturbations with the toroidal mode number n ¼ 1. V C 2012 American Institute of Physics. [http://dx
The 4 th KSTAR campaign in 2011 concentrated on active ELM control by various methods such as non-axisymmetric magnetic perturbations, supersonic molecular beam injection (SMBI), vertical jogs of the plasma column, and edge electron heating. The segmented in-vessel control coil (IVCC) system is capable of applying n≤2 perturbed field with different phasing among top, middle, and bottom coils. Application of an n=1 perturbed field showed desirable ELM suppression result. Fast vertical jogs of the plasma column achieved ELM pace making and ELMs locked to 50 Hz vertical jogs were observed with a high probability of phase locking. A newly installed SMBI system was utilized for ELM control and a state of mitigated ELMs was sustained by the optimized repetitive SMBI pulse for a few tens of ELM periods. A change of ELM behavior was seen due to edge electron heating although the effect of ECH launch needs supplementary analyses. The ECEI images of suppressed/mitigated ELM states showed apparent differences when compared to natural ELMy states. Further analyses are ongoing to explain the observed ELM control results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.