Although composite data from separate subjects can be used to generate single-subject estimates, intersubject variation precludes rigorous ocular pharmacokinetic analysis. Therefore, a rabbit model in which sequential aqueous and vitreous humor samples were obtained following the administration of the quinolone fleroxacin was developed. Mean data from individual animals were used for pharmacokinetic analysis. Following direct intravitreal or systemic drug administration, sequential paracenteses did not alter pharmacokinetic constants or ocular penetration and were not associated with an increase in ocular protein; contamination of vitreous humor with blood was minimal (<0.1%). Following direct injection or intravenous administration, vitreous humor concentration-time data were best described by one-and two-compartment models, respectively. The maximum concentration and the penetration into the aqueous and vitreous humors were 1.54 and 0.5 ,ug/ml and 27 and 10%, respectively. Elimination rates from aqueous and vitreous humors and serum were similar following parenteral drug administration. Drug elimination following direct injection was rapid, and the elimination rate from the vitreous humor was not prolonged by the coadministration of probenecid. Our animal model provides a new approach to the rigorous examination of the ocular pharmacokinetics of quinolone antimicrobial agents in the eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.