Hybrid rice technology offers a great promise to produce 15% to 20% more yield than pure line varieties. The success of hybrid rice hinges on developing superior parental lines. To improve the blast resistance of hybrid rice parental line RP5933-1-19-2R, crosses were made with donors of two major blast resistance genes namely, Pi54 (Tetep) and Pi9 (IR71033-121-15) and the resulting F 1 s were confirmed for their hybridity by using Pi54MAS and NMSMPi9-1 genic markers. The confirmed F 1 s were intercrossed to obtain ICF 1 s and selected positive plants by markers were backcrossed to the recurrent parent, as well as selfed for advancing further to BC 1 F 3 and ICF 4 generations. The segregating plants were phenotyped for blast resistance at Uniform Blast Nursery. The identified complete restorers namely, RP 6619-1, RP 6616-26, RP 6619-3 and RP 6619-11 with Pi9 and Pi54 genes would serve as donors for broad spectrum blast resistance. This could ultimately lead to the development of new rice hybrids with improved resistance to blast disease, which is crucial for sustainable rice production and food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.