Electron cyclotron resonance ion source related development work for heavy-ion irradiation tests Rev. Sci. Instrum. 77, 03A316 (2006); 10.1063/1.2163895 Development of the compact electron cyclotron resonance ion source for heavy-ion therapy Rev. Sci. Instrum. 71, 984 (2000)Ion motion in a Penning trap and the electrical signals it can produce have been analyzed for the purpose of identifying the important causes of uncertainty in high-accuracy mass measurements of heavy ions. The role of the azimuthal quadrupole electric field in signal pickup, and its effects on ion motion at the sum frequency of the cyclotron and magnetron motions, have been identified. A useful scheme for calculating the signal strength and strength of the interaction between an applied field and the ion motion has been developed. The important sources of uncertainty in using the sum frequency of the cyclotron and magnetron motions for determining the ion mass are discussed. Particular application is made to the case of cyclotron resonance detection by observation of the time of flight of ejected ions.
The p((11)Li, (9)Li)t reaction has been studied for the first time at an incident energy of 3A MeV at the new ISAC-2 facility at TRIUMF. An active target detector MAYA, built at GANIL, was used for the measurement. The differential cross sections have been determined for transitions to the (9)Li ground and first excited states in a wide range of scattering angles. Multistep transfer calculations using different (11)Li model wave functions show that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.
Abstract. The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 − 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76 Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76 Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 10 28 years, using existing resources as appropriate to expedite physics results.
The neutron-rich nucleus 144 Ba (t 1/2 =11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive-and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multi-step Coulomb excitation of a postaccelerated 650-MeV 144 Ba beam on a 1.0-mg/cm 2 208 Pb target. The measured value of the matrix element, 3 − 1 M(E3) 0 + 1 = 0.65( +17 −23 ) eb 3/2 , corresponds to a reduced B(E3) transition probability of 48( +25 −34 ) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.