We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E 2g optical mode splits in two components: one polarized along the strain and the other perpendicular. This splits the G peak into two bands, which we call G + and G − , by analogy with the effect of curvature on the nanotube G peak. Both peaks redshift with increasing strain and their splitting increases, in excellent agreement with first-principles calculations. Their relative intensities are found to depend on light polarization, which provides a useful tool to probe the graphene crystallographic orientation with respect to the strain. The 2D and 2DЈ bands also redshift but do not split for small strains. We study the Grüneisen parameters for the phonons responsible for the G, D, and DЈ peaks. These can be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for nanoelectronics, where strain monitoring is of paramount importance
We uncover the interlayer shear mode of multi-layer graphene samples, ranging from bilayergraphene (BLG) to bulk graphite, and show that the corresponding Raman peak measures the interlayer coupling. This peak scales from∼43cm −1 in bulk graphite to∼31cm −1 in BLG. Its low energy makes it a probe of near-Dirac point quasi-particles, with a Breit-Wigner-Fano lineshape due to resonance with electronic transitions. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.Single Layer Graphene (SLG) has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability [1,2]. As the knowledge of the basic properties of SLG increases, an ever growing effort is being devoted to a deeper understanding of Few Layer Graphene (FLG) samples [3][4][5], and to their application in useful devices. For example, since SLG absorbs 2.3% of the incident light [6], FLG can be used to beat the transmittance of Indium Tin Oxide(∼90%) [2], and to engineer near-market transparent conductors [7], exploiting the lower sheet resistance afforded by combining more than one SLG [2,7]. Bilayer graphene (BLG) is a tunable band gap semiconductor [8], tri-layer graphene (TLG) has a unique electronic structure consisting, in the simplest approximation, of massless SLG and massive BLG subbands [9][10][11]. FLG with less than 10 layers do each show a distinctive band structure [11]. The layers can be stacked as in graphite, or have any orientation. This gives rise to a wealth of electronic properties, such as the appearance of a Dirac spectrum even in FLG [12].There is thus an increasing interest in the physics and applications of FLG. Optical microscopy can count the number of layers [13,14], but does not offer the insights of Raman spectroscopy, being this sensitive to quasiparticle interactions [15]. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples [15,16]. The measurement of the SLG, BLG, and FLG Raman spectra[15] triggered a huge effort to understand phonons, electron-phonon, magneto-phonon and electron-electron interactions, and the influence on the Raman process of number and orientation of layers, electric or magnetic fields, strain, doping, disorder, edges, and functional groups [16].The SLG phonon dispersions comprise three acoustic and three optical branches. A necessary, but not sufficient, condition for a phonon mode to be Raman active is to satisfy the Raman fundamental selection rule, i.e. to be at the Brillouin Zone centre, Γ, with wavevector q ≈ 0 [17]. SLG has six normal modes at Γ: [18]. There are two degenerate in-plane optical modes, E 2g , and one out-of-plane optical mode B 2g [18]. E 2g modes are Raman active, while B 2g is neither Raman nor IR active [18]. In the case of graphite there are 4 atoms per unit cell, and only half of them have fourth neighbors that either lie directly above or below in adjacent layers. Therefore the two atoms of the unit cell in each layer are now inequivalent. ...
We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon dispersions and push the superconducting critical temperature above 90 K. As evidence of graphane was recently reported, and doping of related materials such as graphene, diamond, and carbon nanostructures is well established, superconducting graphane may be feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.