Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the microtomography method. An advantage of the microtomography method is the ability to determine explicitly both total and capillary-associated interfacial areas, which is problematic for the tracer-test methods.
[1] The relationships among air-water interfacial area, capillary pressure, and water saturation were investigated for a sandy, natural porous medium. Air-water interfacial areas as a function of water saturation were measured using two methods, gas phase partitioning tracer tests and synchrotron X-ray microtomography. The tracer test method provides a measure of effective total (capillary and film) interfacial area, whereas microtomography can be used to determine both capillary-associated and total areas (the latter is the focus of this study). Air-water interfacial areas determined with both methods increased continuously with decreasing water saturation. The areas measured with the tracer test method were significantly larger than those obtained from microtomography. The maximum values measured with the tracer test method approached the N 2 /BET-measured specific solid surface area, whereas the maximum values measured by microtomography approached the smooth-sphere-calculated specific solid surface area. The interfacial area-saturation data were combined with capillary pressure-saturation data obtained from water drainage experiments to examine the relationship between total air-water interfacial area and capillary pressure. Air-water interfacial area was observed to increase monotonically with increasing capillary pressure and then to plateau at values that correspond to areas associated with residual water saturation. These results are consistent with previously reported theoretically and computationally based analyses of functional relationships between total nonwetting-wetting interfacial area and capillary pressure.
The objective of this study was to quantitatively characterize the pore-scale morphology of organic immiscible liquid residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid blob morphology. Three porous media, comprising a range of particle-size distributions, were used to evaluate the impact of porous-medium texture on blob morphology. The sizes and shapes of the organic-liquid blobs varied greatly, ranging from small spherical singlets (> or = 0.03 mm in diameter) to large, amorphous ganglia with mean lengths of 4-5 mm. The smaller blobs were composed primarily of singlets, which comprised approximately half of all blobs for all three media. Conversely, large, complex blobs comprising four or more bodies composed 11-24% of the total number of blobs. However, the majority of the total organic-liquid surface area and volume was associated with the largest blobs. The ratio of median blob size to median grain size was close to unity for all three systems. The distribution of blob sizes was greatest for the porous medium with the broadest particle-size and pore-size distributions. These results illustrate the utility of synchrotron X-ray microtomography for characterizing fluid distributions at the pore scale in natural porous media.
[1] Interfacial areas between an immiscible organic liquid (NAPL), and water were measured for two natural porous media using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. The interfacial areas measured with the tracer tests were similar to previously reported values obtained with the method. The values were, however, significantly larger than those obtained from microtomography. Analysis of microtomography data collected before and after introduction of the interfacial tracer solution indicated that the surfactant tracer had minimal impact on fluid-phase configuration and interfacial areas under conditions associated with typical laboratory application. The disparity between the tracer test and microtomography values is attributed primarily to the inability of the microtomography method to resolve interfacial area associated with microscopic surface heterogeneity. This hypothesis is consistent with results recently reported for a comparison of microtomographic analysis and interfacial tracer tests conducted for an air-water system. The tracer test method provides a measure of effective, total (capillary and film) interfacial area, whereas microtomography can be used to determine separately both capillary-associated and film-associated interfacial areas. Both methods appear to provide useful information for given applications. A key to their effective use is recognizing the specific nature of the information provided by each, as well as associated limitations.
The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (Af) and maximum specific interfacial area (Am) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.