In this paper we present the second generation receptance coupling substructure analysis (RCSA) method, which is used to predict the tool point response for high-speed machining applications. This method divides the spindle-holder-tool assembly into three substructures: the spindle-holder base; the extended holder; and the tool. The tool and extended holder receptances are modeled, while the spindle-holder base subassembly receptances are measured using a "standard" test holder and finite difference calculations. To predict the tool point dynamics, RCSA is used to couple the three substructures. Experimental validation is provided.
A Helmholtz resonator with a uniform, flexible end plate is studied in this work. This work shows that the flexible plate modifies the frequency response characteristics of the resonator, providing multiple distinct resonant frequencies instead of a single resonant frequency. Therefore, acoustical transmission loss will increase at each of the multiple resonant frequencies of the resonator and plate assembly versus at a single frequency for the unmodified Helmholtz resonator. By using receptance coupling as the modeling approach, the receptance of the Helmholtz resonator and flexible plate assembly is predicted by coupling receptance models of an unmodified Helmholtz resonator and a clamped plate. Finally, the predicted receptance of the Helmholtz resonator and flexible plate assembly is compared against experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.