Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance was observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.
In this work, we studied influences on the absorption and fluorescence emission spectra of coumarin-4066 (C-466) with different solvent polarity scale. The spectral shifts reflect the effect of the equilibrium solvents association across the energized solute particle, which adjusts inertially as a result of quick charge realignment upon radiative deactivation to the lowest electronic state. The dipole moments of C-466 are determined by employing the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga and McRae relations. The results from all these methods are, excited state dipole moment of C-466 is higher than the ground state dipole moments and which indicates molecule is less polar in the ground state. Theoretical analysis was also carried out by Density Functional theory (DFT and TD -DFT) employing the BECKE-1998 (exchange)/STO-6G basic set in ethanol solvent and in vacuum medium. The HOMO-LUMO, Solvent Accessible Surfaces (SAS) and Molecular Electrostatic Potential (MEP) were analysed to acquire additional knowledge of the molecular arrangement and electronic properties of C-466. These photophysical properties suggest delineation can be mauled for laying out new luminescent tests for various solvents microenvironment.
We determine the nature of coupled phonons in mixed crystal of Cs0.9(NH4)0.1H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60–1100 cm−1. The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v1) and antisymmetric (v3) stretching vibrations associated with AsO4 tetrahedra below transition temperature (Tc* ∼ 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v4 (S9, S11) and v2 (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at ∼92 cm−1 shows anomalous blue shift (∼12 %) from 300 K to 5 K with no sharp transition near Tc* unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.