Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts.
In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis. NomenclatureA = Target Surface Area B = Magnetic Field pressure E = Electric Field f = fractional deposition of alpha particles h = smoothing length H = Magnetic Field J = current density k = thermal conductivity, Boltzmann's constant m = mass n = number density P = Pressure Q = fusion reaction energy Qi = thermal equilibrium term r = position Re = friction tensor 1 Aerospace Engineer, ER24/Advanced Propulsion and Technology, Associate Fellow. 2 t = time T = Temperature u = velocity V = Volume W = kernel Z = ion charge = permittivity = conductivity = viscous stress tensor = magnetic permeability = density <> = velocity averaged fusion cross section
Abstract. Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NE0 population are also reviewed.Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NE0 threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path.The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work.It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.
Abstract. This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.