The degree of pigmentation in muscle of Atlantic salmon, Salmo salar L., fillets of fish that were fed eight diets fortified with 10, 20, 40, 60, 80.100, 150 and 200 mg astaxanthin kg−1 and a non‐supplemented control diet from 3 to 21 months was assessed using different methods. A tristimulus colorimeter (Minolta Chroma Meter) was used to measure the colour composition of the fillets instrumentally. The colour was also determined using the Roche Colour Card for Salmonids. The concentration of astaxanthin in the muscle was measured by chemical analyses. All measurements for colour were done directly on the epaxial muscle anterior to the dorsal fin. The lightness factor (L *). the red/green chromaticity (a*), the yellow/blue chromaticity (b*) and the saturation C* of the colorimetric readings and the Colour Card scores were compared with the chemical analyses.
The astaxanthin concentration in the flesh varied from 1 to 10 mg kg−1 and the visual appearance of the fillets varied from yellowish‐white to red. The relationship between the a*, b* and C* values and the astaxanthin concentration in the muscle was non‐linear. Non‐linear regression lines were found between the a* value and the astaxanthin concentration in the flesh (r2= 0.974) and the b* value and the astaxanthin concentration in the flesh (r2= 0.984). The instrument was not able to detect differences in astaxanthin concentration at astaxanthin levels above 3‐4 mg kg−1 using the presented method directly on the fillet. The instrument might be useful for rejecting groups of salmon with poor pigmentation. A good linear regression was found between the Colour Card score and the mean astaxanthin concentration in the flesh (r2 ‐ 0.992). The Colour Card provided a better prediction of the astaxanthin concentration at higher astaxanthin levels than the Chroma Meter. None of the methods provided a satisfactory prediction of the astaxanthin concentration in the muscle of individual fish using the presented methods.
Atlantic salmon, Salmo salar L., were fed nine experimental diets containing from 0 to 200 mg astaxanthin per kg−1 for six time periods, ranging from 3 to 21 months, in sea cages at Matre Aquaculture Research Station, Matredal, Norway. The sampled fish had an initial mean weight of 115 g and reached a weight of 3.2 kg at the termination of the experiment.
Every third month, 10 fish from each dose and time group were sampled and the astaxanthin concentration in the flesh determined. The amount of astaxanthin in the flesh ranged from 0.7 to 8.9 mg kg−1 at the termination of the experiment.
This paper discusses deposition of astaxanthin in the flesh of Atlantic salmon in relation to dietary carotenoid levels in the 0–200 mg kg−1 range and feeding times of 3–21 months. Under the conditions of this experiment, no significant effect on astaxanthin deposition rate could be achieved by increasing the astaxanthin level above 60 mg kg dry feed−1. Atlantic salmon should be fed astaxanthin‐supplemented diets during the whole seawater stage in order to obtain maximal astaxanthin level in the flesh.
In this study the effect of increasing dietary alpha tocopherol on vitamin E tissue concentrations, lipid peroxidation (malondialdehyde), antioxidant enzymes, and fatty acid composition has been investigated in farmed Atlantic salmon. To this end fish (initial body weight ~ 193 g, n = 70 per group) were fed diets based on fish oil (27.5 %), fish meal (15.0 %), wheat gluten (20.6 %), and soy protein concentrate (24.0 %) for 14 weeks. Diets were supplemented with 0 (negative control), 150, and 400 mg/kg vitamin E as all-rac alpha-tocopheryl acetate. Dietary vitamin E did not affect feed conversion efficiency ratio but significantly (p < 0.05) increased alpha-tocopherol concentrations in salmon plasma, liver, and fillet (n = 8 per group each). The increase in fillet alpha-tocopherol was accompanied by a considerable decrease (p < 0.01) in malondialdehyde concentrations at the higher supplementation level. Furthermore, we observed an antagonistic interaction between alpha- and gamma-tocopherol in plasma at the highest supplementation level, since high dietary alpha-tocopherol reduced plasma gamma-tocopherol concentrations. Liver antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, remained largely unchanged in response to dietary alpha-tocopherol. Dietary alpha-tocopherol did not affect eicosapentaenoic acid and docosahexaenoic acid concentrations in salmon fillet. Present data suggest that alpha-tocopherol supplementations beyond dietary recommendations may further improve flesh quality and nutritional value of Atlantic salmon fillet as far as malondialdehyde and vitamin E concentrations are concerned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.