A study of interferometers with one-bit which-way detectors demonstrates that the trajectories, which David Böhm invented in his attempt at a realistic interpretation of quantum mechanics, are in fact surrealistic, because they may be macroscopically at variance with the observed track of the particle. We consider a two-slit interferometer and an incomplete Stern-Gerlach interferometer, and propose an experimentum crucis based on the latter.
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.
Cooling of internal atomic and molecular states via optical pumping and laser cooling of the atomic velocity distribution, rely on spontaneous emission. The outstanding success of such examples, taken together with general arguments, has led to the widely held notion that radiative cooling requires spontaneous emission. We here show by speci®c examples and direct calculation, based primarily on breaking emission±absorption symmetry as in lasing without inversion, that cooling of internal states by external coherent control ®elds is possible. We also show that such coherent schemes allow us to practically reach absolute zero in a ®nite number of steps, in contrast to some statements of the third law of thermodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.