Objectives: To assess the effects of Rituximab (RTX) on skin and lung fibrosis in patients with systemic sclerosis (SSc) belonging to the European Scleroderma Trial and Research (EUSTAR) cohort and using a nested case-control design. Methods: Inclusion criteria were fulfilment of American College of Rheumatology classification criteria for SSc, treatment with RTX and availability of follow-up data. RTX-treated patients were matched with control patients from the EUSTAR database not treated with RTX. Matching parameters for skin/lung fibrosis were the modified Rodnan Skin Score (mRSS), forced vital capacity (FVC), follow-up duration, scleroderma subtype, disease duration and immunosuppressive co-treatment. The primary analysis was mRSS change from baseline to follow-up in the RTX group compared with the control group. Secondary analyses included change of FVC and safety measures. Results: 63 patients treated with RTX were included in the analysis. The case-control analysis in patients with severe diffuse SSc showed that mRSS changes were larger in the RTX group versus matched controls (N=25; -24.05.2% vs -7.7 +/- 4.3%; p=0.03). Moreover, in RTX-treated patients, the mean mRSS was significantly reduced at follow-up compared with baseline (26.6 +/- 1.4 vs 20.3 +/- 1.8; p=0.0001). In addition, in patients with interstitial lung disease, RTX prevented significantly the further decline of FVC compared with matched controls (N=9; 0.4 +/- 4.4% vs -7.7 +/- 3.6%; p=0.02). Safety measures showed a good profile consistent with previous studies in autoimmune rheumatic diseases. Conclusions: The comparison of RTX treated versus untreated matched-control SSc patients from the EUSTAR cohort demonstrated improvement of skin fibrosis and prevention of worsening lung fibrosis, supporting the therapeutic concept of B cell inhibition in SSc
To monitor cytosolic [Ca2+] over a wide range of concentrations in functioning skeletal muscle cells, we have used simultaneously the rapid but relatively low affinity calcium indicator antipyrylazo III (AP III) and the slower but higher affinity indicator fura-2 in single frog twitch fibers cut at both ends and voltage clamped with a double vaseline gap system. When both dyes were added to the end pool solution the cytosolic fura-2 concentration reached a steady level equal to the end pool concentration within approximately 2.5 h, a time when the AP III concentration was still increasing. For depolarizing pulses of increasing amplitude, the fura-2 fluorescence signal approached saturation when the simultaneously recorded AP III absorbance change was far from saturation. Comparison of simultaneously recorded fura-2 and AP III signals indicated that the mean values of the on and off rate constants for calcium binding to fura-2 in 18 muscle fibers were 1.49 x 10(8) M-1 s-1 and 11.9 s-1, respectively (mean KD = 89 nM), if all AP III in the fiber is assumed to behave as in calibrating solution and to be in instantaneous equilibrium with [Ca2+]. [Ca2+] transients calculated from the fura-2 signals using these rate constants were consistent with the [Ca2+] transients calculated from the AP III signals. Resting [Ca2+] or small changes in [Ca2+] which could not be reliably monitored with AP III could be monitored with fura-2 with little or no interference from changes in [Mg2+] or from intrinsic signals. The fura-2 signal was also less sensitive to movement artifacts than the AP III signal. After a [Ca2+] transient the fura-2 signal demonstrated a relatively small elevation of [Ca2+] that was maintained for many seconds.
SUMMARY1. Intramembrane charge movement and myoplasmic free calcium transients (A[Ca2+]) were monitored in voltage-clamped segments of isolated frog muscle fibres cut at both ends and mounted in a double Vaseline-gap chamber. The fibres were stretched to sarcomere lengths of 3-54-6 ,tm to minimize mechanical movement and the related optical artifacts.2. The over-all calcium removal capability of each fibre was characterized by analysing the decay of A[Ca2+] following pulses of several different amplitudes and durations. The rate of sarcoplasmic reticulum (s.r.) calcium release was then calculated for each A[Ca2+] using the calcium removal properties determined for that fibre.3. The calculated calcium release wave form reached a relatively early peak and then declined appreciably during a 100-150 ms depolarizing pulse. The voltage dependence of the peak rate of calcium release was steeper and was centred at more positive membrane potentials than the steady-state voltage dependence of charge movement in the same fibres.4. A considerable fraction of the total intramembrane charge was moved at potentials at which A[Ca2+] and calcium release were only a few per cent of maximum.This 'subthreshold' charge may correspond to charge moved in preliminary transitions that precede a final charge transition that activates release. 5. A 'stepped on' pulse protocol was used to experimentally separate the subthreshold charge movement from the charge movement of the final transitions that may control calcium release. The stepped on pulse consisted of a set 50 ms pre-pulse to a potential just at or below the potential for detectable A W. MELZER AND OTHERS 6. For a wide range of test pulse amplitudes and durations in the stepped on protocol the peak rate of calcium release was linearly related to the charge movement during the test pulse. This result points to a tight control of activation of s.r. calcium release by intramembrane charge movement.7. The voltage dependence of both charge movement and of the rate of calcium release could be fitted simultaneously with a three-state, two-transition sequential model in which charge moves in both transitions but only the final transition activates s.r. calcium release. A model with three identical and independent charged gating particles per channel gave an equally good fit to the data. Both models closely fit the charge movement and release data except within about 10 mV of the voltage at which release became detectable, where release varied more steeply with membrane potential than predicted by either model. 8. Fits with the three-state model gave about equal amounts of charge movement in each transition but a 30-50 mV difference in the mid-point voltages for the two transitions. The single channel current calculated for the s.r. calcium channel based on this model was similar to values obtained for single surface membrane calcium channels in other preparations under similar transmembrane conditions.
SUMMARY1. Free intracellular calcium transients (A[Ca2+] were monitored in cut segments of frog skeletal muscle fibres voltage clamped in a double Vaseline-gap chamber and stretched to sarcomere lengths that eliminated fibre movement. The measured calcium transients were used to calculate the rate of calcium release from the sarcoplasmic reticulum (s.r.) as previously described (Melzer, Rios & Schneider, 1984, 1987.2. Conditioning pulses were found to suppress the rate of calcium release in test pulses applied after the conditioning pulse. Various combinations of conditioning and test pulses were used to investigate the basis of the suppression of calcium release by the conditioning pulse.3. Using a constant test pulse applied at varying intervals after a constant conditioning pulse, recovery from suppression of release was found to occur in two phases. During the fast phase of recovery, which was completed within about 1 s, the rate of calcium release was smaller and had a different wave form than the unconditioned control release. The early peak in release that is characteristic of the control release wave form was absent or depressed. During the slow phase of recovery, which required about 1 min for completion, the release wave form was the same as control but was simply scaled down compared to the control. M. F. SCHNEIDER, B. J. SIMON AND G. SZUCS from the slowly equilibrating myoplasmic calcium binding sites indicated that the two processes occurred in parallel.6. Using a set 1 s recovery period and a constant test pulse but varying the amplitude and/or duration of the conditioning pulse, the degree of slowly recovering suppression of release was found to be directly related to the amount of calcium remaining outside of the s.r. at the start of the test pulse.7. Points 3, 5 and 6 above indicate that the slow recovery from suppression of release may be due to slow recovery from depletion of calcium from the s.r.8. Records of the rate of calcium release were corrected for the decline in release due to the slowly recovering component of suppression of release. Such corrected records indicated that the slowly recovering component produced only a relatively small and slow decline in release during a pulse. The early peak and sharp decline in release during a pulse must therefore be produced by the component of suppression of release that recovers rapidly following a conditioning pulse.
SUMMARY1. The effects of perchlorate ions (1-8 mM) on intramembrane charge movement, myoplasmic Antipyrylazo III Ca2+ transients and contractile activation were examined in voltage-clamped cut skeletal muscle fibres of the frog.2. Perchlorate shifted both the voltage dependence of charge movement and the rheobase of the strength-duration relation for contraction threshold towards more negative membrane potentials.3. Both charge movements and myoplasmic Ca2+ transients were much slower at the new rheobase in the presence of perchlorate than in the control solution but there was no change in the threshold amount of charge or in the calculated peak binding of Ca2+ to troponin C.4. The peak release rate had a steeper voltage dependence than the non-linear charge, but a lower concentration (2 mM) of perchlorate shifted both voltage dependences equally without altering the maxima in the amount of charge and in the rate of Ca2+ release.5. The voltage dependence of the difference between total charge and charge at the threshold of Ca2+ transients agreed well with the voltage dependence of the rate of Ca2+ release in both the presence and absence of perchlorate. 6. It is concluded that the effect of perchlorate on contractile activation can be accounted for by its action on the intramembrane charge movement responsible for contraction, without significant effects on subsequent Ca2+ release from the sarcoplasmic reticulum or on Ca2+ binding to regulatory sites of troponin C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.