An experiment was conducted to determine the effects of high vs low body condition scores (BCS) produced by restricted feeding on reproductive characteristics, hormonal secretion, and leptin concentrations in mares during the autumnal transition and winter anovulatory period. Mares with BCS of 6.5 to 8.0 were maintained on pasture and/or grass hay, and starting in September, were full fed or restricted to produce BCS of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) by December. All but one mare with high BCS continued to ovulate or have follicular activity during the winter, whereas mares with low BCS went reproductively quiescent. Plasma leptin concentrations varied widely before the onset of restriction, even though all mares were in good body condition. During the experiment, leptin concentrations gradually decreased (P < 0.0001) over time in both groups, but were higher (P < 0.009) in mares with high vs low BCS after 6 wk of restriction, regardless of initial concentration. No differences (P > 0.1) between groups were detected for plasma concentrations of LH, FSH, TSH, GH, glucose, or insulin in samples collected weekly; in contrast, plasma prolactin concentrations were higher (P < 0.02) in mares with high BCS, but also decreased over time (P < 0.008). Plasma IGF-I concentrations tended (P = 0.1) to be greater in mares with high vs low BCS. The prolactin response to sulpiride injection on January 7 did not differ (P > 0.1) between groups. During 12 h of frequent blood sampling on January 12, LH concentrations were higher (P < 0.0001), whereas GH concentrations (P < 0.0001) and response to secretagogue (EP51389; P < 0.03) were lower in mares with high BCS. On January 19, the LH response to GnRH was higher (P < 0.02) in mares with high BCS; the prolactin response to TRH also was higher (P < 0.01) in mares with high BCS. In conclusion, nutrient restriction resulting in low BCS in mares resulted in a profound seasonal anovulatory period that was accompanied by lower leptin, IGF-I, and prolactin concentrations. All but one mare with high BCS continued to cycle throughout the winter or had significant follicular activity on the ovaries. Although leptin concentrations on average are very low in mares with low BCS and higher in well-fed mares, there is a wide variation in concentrations among well-fed mares, indicating that some other factor(s) may determine leptin concentrations under conditions of high BCS.
Thirty-eight Angus-cross beef cows were used to evaluate differences in DMI, residual feed intake (RFI), and endocrine markers on the basis of cow size and RFI ranking during 2 stages of production. Cows housed in individual pens (2.2 × 9.1 m) were fed, over a 70-d feeding period, 30% Bermuda grass hay and 70% ryegrass baleage diet during lactation (LACT) and a 100% ryegrass hay diet during postweaning (NOLACT). Individual daily feed intake, BW, and BCS were recorded, and hip height was used to determine frame score (FS). Feed intake was used to calculate RFI for each cow, and cow was the experimental unit. Blood samples were obtained on d 0 and 70 and were analyzed for glucose, insulin, leptin, triiodothyronine (T3), and thyroxine (T4). Cows were assigned to a light (LIT) or heavy (HEV) BW groups on the basis of mean BW at the beginning of the LACT period. On the basis of RFI values for each feeding period, cows were placed into a negative (NEG; RFI < 0.00) or positive (POS; RFI > 0.00) RFI group and into a low (LOW; ≤0.2 SD mean RFI), medium (MED; within ±0.19 SD), or high (HI; ≥0.2 SD mean RFI) RFI group. During LACT, DMI was 4.8% greater (P = 0.03) and FS was greater (P < 0.01; 6.4 and 5.5 ± 0.16) for the HEV compared with LIT BW cows. No RFI by day interaction or RFI group main effect occurred for endocrine markers during LACT; however, a negative relationship (P = 0.04) existed between BW group and combined T3 data, and a positive relationship (P = 0.04) existed between RFI and combined insulin data. For both LACT and NOLACT, RFI was similar (P > 0.05) among BW groups; however, DMI was 6.5% and 8.9% greater (P < 0.01) for POS compared with NEG RFI in the LACT and NOLACT periods. In LACT, DMI was greater (P < 0.01) for HI and MED RFI compared with LOW RFI, and in NOLACT, DMI was greater (P < 0.01) for the HI compared with MED and LOW RFI cows and MED compared with LOW RFI cows. During NOLACT, DMI was 8.9% greater (P < 0.01) for the HEV (12.4 ± 0.22 kg) compared with LIT (11.3 ± 0.19 kg) BW cows. Change in BCS was greater (P ≤ 0.03) in higher RFI cows in both RFI groups only in the NOLACT period. Differences in T3 and T4 on d 0 and 70 were 25% and 15% greater (P ≤ 0.04) for the LIT BW group compared with the HEV BW group. A negative correlation existed (P ≤ 0.04) between BW group and T3 and T4, as well as leptin and RFI (P = 0.03). Although cow BW was independent of RFI and T3 and T4 levels tended to be greater in lighter BW cows, DMI was consistently greater for cows with heavier BW and higher RFIvalues.
Mares that had previously been fed to attain body condition scores (BCS) of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) were used to determine the interaction of BCS with the responses to 1) administration of equine somatotropin (eST) daily for 14 d beginning January 20 followed by administration of GnRH analog (GnRHa) daily for 21 d and 2) 4-d treatment with dexamethasone later in the spring when mares in low BCS had begun to ovulate. The majority of mares with high BCS continued to cycle throughout the winter, as evidenced by larger ovaries (P < 0.002), more corpora lutea (P < 0.05), greater progesterone concentrations during eST treatment (P < 0.04), and more (P < 0.05) large- and medium-sized follicles. Treatment with eST alone or in combination with GnRHa had no effect (P > 0.05) on ovarian activity or ovulation. Plasma leptin concentrations were greater (P < 0.002) in mares with high BCS; however, there was no effect (P > 0.10) of eST treatment. Plasma IGF-I concentrations were greater (P < 0.0001) in mares treated with eST compared with mares given vehicle, and mares with high BCS had greater IGF-I (P < 0.02) and LH concentrations (P < 0.02) than mares with low BCS. Plasma leptin concentrations in mares with high BCS were increased (P < 0.001) within 12 h of dexamethasone treatment; the leptin response (P < 0.001) in mares with low BCS was greatly reduced (P < 0.001) and transient. Glucose and insulin concentrations also increased (P < 0.0001) after dexamethasone treatment in both groups, and the magnitude of the response was greater (P < 0.0001) in mares with high BCS than in mares with low BCS. In summary,low BCS in mares was associated with a consistent seasonal anovulatory state that was affected little by eST and GnRHa administration. In contrast, all but one mare with high BCS continued to experience estrous cycles and(or) have abundant follicular activity on their ovaries. The IGF-I response to eST treatment was also reduced in mares with low BCS, as was the basal leptin concentration and leptin response to dexamethasone. Although low BCS and leptin concentrations were associated with inactive ovaries during winter and early spring, mares with low BCS eventually ovulated in April and May while leptin concentrations remained low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.