Genetic selection in broilers has resulted in improved growth performance, meat yield, and feed conversion efficiency. However, consumers have become increasingly concerned about modern broiler welfare that is related to their rapid growth rate, which may be alleviated by nutrient dilution. This study was conducted to investigate the effects of dietary amino acid ( AA ) reduction on the growth performance and internal organ development of different genetic strains of broilers. A randomized completed block design with a factorial arrangement of 10 treatments (5 strains × 2 AA levels) was used. The 5 different strains of broilers were fed either a control diet, with digestible AA (lysine, total sulfur AA, and threonine) at the highest recommended levels for the 5 strains, or an AA-reduced diet, with the digestible AA being 20% lower than the control diet. Feed conversion ratio was increased by AA reduction in all 5 strains during day 0–14, 14–28, and 28–41 but was not affected from day 41–55. Body weight and feed intake responses to AA reduction varied in the different strains and ages of birds. Liver weight relative to BW on day 40, and weights of the duodenum and jejunum relative to BW on day 60 were increased by decreasing the dietary AA concentration. These results indicate that the birds had adjusted their organ growth and metabolism in response to increases in digestion, absorption, and utilization efficiency to accommodate a decrease in dietary AA content. Surprisingly, the cost of feed required to produce the same BW was decreased in 4 of 5 strains on both day 41 and 55, which was largely because of the lower price of the diets containing reduced AA levels and the later compensatory growth experienced by the birds fed AA-reduced diets. In the future, when dietary AA levels need to be adjusted to control growth rate and improve welfare status, the genetic strain, age of the birds, and targeted goals need to be taken into consideration.
Global poultry production is facing several challenges including a projected increase in global demand for high quality animal proteins and the need to adapt to environmental contrasts including heat stress and the increasing pressure on natural resource (water, land, and energy) availability. Heat stress is one of the most challenging stressor to poultry production because of its strong adverse effects on welfare, production, mortality, and water usage. Most commercial poultry houses worldwide are equipped with a combination of tunnel ventilation and evaporative cooling system (pads, fogging, or low-pressure misting systems) as the status quo to overcome heat stress. Despite prior investments in these systems, critical problems continue to impede poultry production efficiency, which still declines during hot seasons. In fact, these systems tend to saturate the barn air with moisture (>70% relative humidity) which is counterproductive to the bird's own physiological ability to cool itself by hyperventilation (evaporative heat loss). The second challenge with these systems is the significant amount of water usage. This review will summarize some of the benefits of surface wetting of birds through sprinkler technology (SPRINK) that has higher efficiency to maintain birds' comfort with significantly less use of cooling water. Despite higher air temperature and lower relative humidity in the sprinkler house, the SPRINK decreased broiler body core temperature, reduced systemic and intracellular stress, preserved intracellular energy, and averaged six points better FCR compared to evaporative cooling system.
Daily feed use, water use, body weight, and mortality of Cobb x Cobb male broilers over 8-wk growout periods were measured for 10 consecutive growouts in four commercial-scale broiler houses (121.0 x 12.1 m each). Polynomial equations were developed to relate bird age to body weight, daily feed and water use, cumulative weekly feed and water use, and cumulative mortality. Weekly feed conversion was derived from growth and feed use data and was depicted by a third-order polynomial equation. Dead bird weight was calculated using mortality and body weight of the broilers and related to bird age with three polynomial equations over the growth period. Total dead bird weight averaged 76 kg per 1,000 birds placed, of which 10 kg or 13% occurred during the first 5 wk and the remaining 66 kg or 87% occurred during the last 3 wk of the growout periods. Results of this study provide a realistic data base for mathematical modeling of production responses and a guideline for management planning in commercial male broiler operation.
In a companion study, we found that inclusion of different doses of riboflavin affected growth performance of Ross 708 male broilers' responses to coccidial challenge (by 5 Eimeria spp on day 14 of age) and dietary Bacillus subtilis ( B. subtilis ) supplementation. The current study was conducted to further test whether supplementation of B. subtilis and riboflavin will reduce negative impact and inflammation caused by Eimeria spp proliferation and help proper function of internal organs. A total of 1,248 Ross × Ross 708 male broiler chicks were randomly placed in 96 floor pens (8 blocks, 12 treatments). Treatments were arranged in a 3 (riboflavin) × 2 ( B. subtilis) × 2 (Coccidial challenge) factorial arrangement in a randomized complete block design. Coccidial challenge reduced the weight of sampled birds on day 27 and day 36 and increased the relative weights of the internal organs of proventriculus, duodenum, jejunum, ileum, and spleen to BW on day 27, which may be because of inflammation caused by proliferation of Eimeria spp. The increased relative weights of duodenum, jejunum, ileum, and spleen on coccidial challenged birds were lost on day 36. Correlation analysis also indicated that the jejunum weight was positively related to villus height, Eimeria acervulina, and Eimeria maxima on day 27 but was not on day 36. The loss of the positive relationships may be because of recovery of the birds from coccidiosis on day 36. Even though the coccidial challenge and riboflavin interactively affected feed conversion ratio and BW gain and supplementation of dietary B. subtilis reduced mortality from day 35 to 42 in the companion study, the same response of internal organs was not observed in the current study. Coccidial challenge compromised development of internal organs of Ross 708 male broilers at an early age, but the negative effects subsided with age of birds rather than supplementation of riboflavin and B. subtilis at current tested levels under our experimental set up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.