The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional $\approx 140$ being rejected), corresponding to $\gtrsim 95%$ sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
The propagation of errors through the uniform disk visibility function is examined. Implications of those errors upon measures of absolute visibility through optical and near-infrared interferometers are considered within the context of using calibration stars to establish system visibilities for these instruments. We suggest a simple ratio test to establish empirically whether or not the measured visibilities produced by such an instrument are relative (errors dominated by calibrator angular size prediction error) or absolute (errors dominated by measurement error).
Cost data for ground-based telescopes of the last century are analyzed for trends in the relationship between aperture size and cost. We find that for apertures built prior to 1980, costs scaled as aperture size to the 2.8 power, which is consistent with the previous finding of Meinel (1978). After 1980, 'traditional' monolithic mirror telescope costs have scaled as aperture to the 2.5 power. The large multiple mirror telescopes built or in construction during this time period (Keck, LBT, GTC) appear to deviate from this relationship with significant cost savings as a result, although it is unclear what power law such structures follow. We discuss the implications of the current cost-aperture size data on the proposed large telescope projects of the next ten to twenty years. Structures that naturally tend towards the 2.0 power in the cost-aperture relationship will be the favorable choice for future extremely large apertures; our expectation is that space-based structures will ultimately gain economic advantage over ground-based ones.
The Keck Interferometer is being developed by JPL and CARA as one ofthe ground-based components ofNASA's Origins Program. The interferometer will combine the two 10-rn Keck telescopes with four proposed 1 .8-rn outrigger telescopes located at the periphery ofthe Keck site on Mauna Kea. Incorporation of adaptive optics on the Keck telescopes with cophasmg using an isoplanatic reference provides high sensitivity. Back-end instrumentation will include two-way combiners for cophasing and single-baseline measurements, a nulling combiner for high-dynamic range measurements, and a multi-way imaging combiner. Science objectives include the characterization of zodiacal dust around other stars, detection of hot Jupiters and brown dwarfs through multi-color differential-phase measurements, astrometric searches for planets down to Uranus-mass, and a wide range of infrared imaging.
We measured the angular diameters of 44 stars with the Navy Precision Optical Interferometer, obtaining uncertainties on the limb-darkened diameter of 2% or less for all but four stars. We then used our diameters with Gaia or Hipparcos parallaxes to calculate each star’s physical radius. We gathered information from the literature to determine bolometric flux and luminosity, and combined that with our diameters to produce an effective temperature. Our sample consists of mostly giant stars, and spans a wide range of spectral classes from B to M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.