Increasing evidence suggests a major role for phosphatidylcholine (PC) in plant stress adaptation. The present work investigated the regulation of choline, PC and interconnected phosphatidylethanolamine biosynthesis in Arabidopsis thaliana L. as a function of cold-and salt-or mannitol-mediated hyperosmotic stresses. While PC synthesis is accelerated in both salt-and cold-treated plants, the choline kinase (CK) and phosphocholine cytidylyltransferase genes are oppositely regulated with respect to these abiotic treatments. Salt stress also stimulates CK activity in vitro. A possible regulatory role of CK in stimulating PC biosynthesis rate in salt-stressed plants is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.