This article dwells on two technical aspects, the design and implementation of an upgraded version of the differential shape-memory alloy–based revolute actuator/rotary actuating mechanism for stabilization and position control of a two-degree-of-freedom centrally hinged ball on beam system. The actuator is configured with differential and inclined placement of shape-memory alloy springs to provide bidirectional angular shift. The shape-memory alloy spring actuator occupies a smaller space and provides more extensive reformation with justifiable actuation force than an equally able shape-memory alloy wire. The cross or diagonal architecture of shape-memory alloy springs provides force amplification and reduces the actuator’s control effort. The shape-memory alloy spring–embodied actuator’s function is exemplified by the highly dynamic underactuated custom-designed ball balancing system. The ball position control is experimentally demonstrated by cascade control using the control laws that have been unattempted for shape-memory alloy actuated systems; the ball is positioned with linear (integer-order and fractional-order) proportional–integral–derivative controllers optimized with genetic algorithm and particle swarm optimization at the outer/primary loop. Angular control of the shape-memory alloy actuated beam is obtained with nonlinear (integer-order and fractional-order sliding mode control) control algorithms in the inner/secondary loop.
Summary
A novel force measurement technique using the variable resistance property of shape memory alloy (SMA) spring is presented. The unique abilities of SMA, a smart material make it a potential candidate to construct actuators and dampers and of late is added to the domain of sensing technology in the design of creative sensing systems. The sensing mechanism is realized using a lever arm made of less stiff acrylic material; one of the links of the lever arm is integrated with an SMA spring actuator that is connected perpendicular to the stationary base, and the unknown load is placed at the other link; the force due to the measurand and the transmitted force act on the arms of the lever. The displacement due to the application of force on one of the flexible arms causes a variation in the strain that leads to resistance variation of the Joule‐heated SMA spring attached at the other arm. The active sensor possesses static and dynamic sensing capabilities and can detect force in the range of a few millinewtons, and the sensor design is validated from the experimental measurements and analytical results. The performance of the sensor is evaluated from its static and dynamic characteristics and depicts promising results. The design methodology of the sensor mechanism and selection of material suitable to offer flexible transformation of force leads to the development of a force sensor with fine resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.