The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all‐glass field‐widened achromatically and thermally compensated phase‐stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase‐stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.
In this paper we study and modify previous semiempirical models of the solar photosphere as observed at moderate spatial and temporal resolution ($3 00 and $30 minutes, respectively) in the main quiet-and active Sun component features. Our present models are constructed to match the relevant available observations at this resolution for which a one-dimensional and time-independent stratification is reasonable. The models do not describe the fine structure and temporal variability observed in high-resolution images but correspond to a ''radiation averaging'' over the finestructure and p-mode variations. We use the observed limb darkening in the range 0.3-2.4 m, as well as the absolute intensities and details of the spectral continua and lines in this range, to validate and adjust the models. Using the method described in a previous paper, we compute the emergent radiation from our models in full detail for the visible and IR continuum and the lines in the interval 0.3-5 m for which we have atomic data from NIST ($13,000 lines used) and molecular data from HITRAN and Gray & Corbally ($480,000 molecular lines used). The observations, abundances, and atomic/molecular data are improved over previous work and yield models that better fit the observations. In addition, we construct a new penumbra model. The visible and IR detailed spectra computed from these models provide insight for understanding the effects of magnetic fields on the solar irradiance and are useful tools for computing synthetic spectral irradiances in different solar activity configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.