This paper first presents an experimental electrical and optical study of the development of an electrical discharge in water. The point–plane water gap is subjected to a 0.02 µs/350 µs impulse voltage. A Schlieren device associated with an image converter or a photomultiplier demonstrates that the discharge phenomenon requires heating of the water located around the extremity of the point. This thermal process leads to the formation of gas bubbles in which an electrical discharge propagates. In the experimental conditions a threshold value of 80 J is necessary to create bubbles. No UV or IR light emission is recorded before the presence of bubbles is detected. When the energy conditions are sufficient (⩾200 J), the volume of bubbles grows until the whole inter-electrode space is filled; then a breakdown of the gap occurs. When this happens, a high amplitude pressure shock wave is generated. In the second phase of this work the shock wave created by the gap breakdown was studied for energy levels up to 100 kJ. It is clearly pointed out that the pressure shock wave peak value depends on the energy remaining at breakdown time. For a constant remaining energy, the peak pressure value increases with increasing gap length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.