Remote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG) optimization technique to increase the exploitation in feature selection. Augmentation is applied in input images to generate more images, and this helps to train the model and reduces data imbalance problems. The VGG-19 and ResNet50 model is applied for feature extraction, and this helps to extract deep features to represent objects. The SSG feature selection technique increases the exploitation and select unique features for object detection that helps to overcome the data imbalance and overfitting problem. The SSG feature selection model helps to balance the exploration and exploitation that escape from the local optima trap. The SSG model has 82.45% mAP, the SSD model has 52.6% mAP, and the MPFP-Net model has 80.43% mAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.