This paper presents the results of a defect structure investigation in commercially pure titanium alloy after hydrogen charging in a gaseous atmosphere at the temperature of 873 K up to the concentration of 5.1 at. %. Structure of samples was studied by positron lifetime, Doppler broadening and X-ray diffraction spectrometry. Several processes, corresponding to the different ranges of hydrogen concentrations were revealed. It was shown that hydrogen, penetrating in the material, expands its crystal lattice, initiates formation of vacancy-like defects of different dimensions and reacts with the last ones, forming the defect-hydrogen complexes.
The experimental study of the structure of commercially pure titanium after saturation with hydrogen from the gas phase by means of positron lifetime spectroscopy (PLS) and Doppler broadening spectroscopy (DBS) was carried out. In the result of penetration and accumulation of hydrogen, significant changes of annihilation characteristics occurred due to the defect structure changing. The investigated samples contained hydrogen in concentrations varying from 0 to 0.961 wt.%. Several stages of hydrogen interaction with the metal structure were revealed.
This paper presents experimental results of eddy current analysis of hydrogen in technically pure titanium alloy. Eddy currents when penetrating various depths change their parameters in relation to material properties. Each layer possesses different degree of hydrogenation and differs in number of defects and their location. The measurement of hydrogenated titanium conductivity in various depths with different angular position of eddy current probe were performed and discussed. Components` surface measurements caused by hydrogenation were registered by currents with the frequency of 10 MHz. The results can be used for the development of new materials with required properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.