Currently, laser systems based on active elements doped with Yb3+ with simultaneously high pulse repetition rates and high peak power are in demand for many applications. High thermal load of active elements is the primary limiting factor for average power scaling. Experimental investigation of temperature distribution in active elements is of particular importance for estimation of cooling efficiency and for thermal processes’ monitoring. In the present work, the method of dynamic laser thermometry is proposed for temperature distribution investigation within cryogenically cooled Yb3+-doped active elements. The method is based on the dependence of the Yb3+ ion absorption cross-section on temperature at a wavelength of 1030 nm. The method was tested to study the 2D temperature map of the Yb:YAG active element of the high-power, diode-pumped, cryogenically cooled laser amplifier. The best measurement accuracy ±3 K is achieved at the maximal temperature 176 K. The results of numerical simulation are in good agreement with the experimental data. On the basis of the investigation, the quality of the cooling system is evaluated. The advantages and other possible applications of the method are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.