Although the potential of the powerful mapping and representational capabilities of recurrent network architectures is generally recognized by the neural network research community, recurrent neural networks have not been widely used for the control of nonlinear dynamical systems, possibly due to the relative ineffectiveness of simple gradient descent training algorithms. Developments in the use of parameter-based extended Kalman filter algorithms for training recurrent networks may provide a mechanism by which these architectures will prove to be of practical value. This paper presents a decoupled extended Kalman filter (DEKF) algorithm for training of recurrent networks with special emphasis on application to control problems. We demonstrate in simulation the application of the DEKF algorithm to a series of example control problems ranging from the well-known cart-pole and bioreactor benchmark problems to an automotive subsystem, engine idle speed control. These simulations suggest that recurrent controller networks trained by Kalman filter methods can combine the traditional features of state-space controllers and observers in a homogeneous architecture for nonlinear dynamical systems, while simultaneously exhibiting less sensitivity than do purely feedforward controller networks to changes in plant parameters and measurement noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.