Spatial organization of chromatin plays a critical role in genome regulation. Various types of affinity mediators and enzymes have been attributed to regulate spatial organization of chromatin from a thermodynamics perspective. However, at the mechanistic level, enzymes act in their unique ways. Here, we construct a polymer physics model following the mechanistic scheme of Topoisomerase-II, an enzyme resolving topological constraints of chromatin, and investigate its role on interphase chromatin organization. Our computer simulations demonstrate Topoisomerase-II's ability to phase separate chromatin into eu-and heterochromatic regions with a characteristic walllike organization of the euchromatic regions. Exploiting a mean-field framework, we argue that the ability of the euchromatic regions crossing each other due to enzymatic activity of Topoisomerase-II induces this phase separation. Motivated from a recent experimental observation on different structural states of the eu-and the heterochromatic units, we further extend our model to a bidisperse setting and show that the characteristic features of the enzymatic activity driven phase separation survives there. The existence of these characteristic features, even under the non-localized action of the enzyme, highlights the critical role of enzymatic activity in chromatin organization, and points out the importance of further experiments along this line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.