The deformation behavior of high-chromium steel (0.4%C-0.6%Si-0.55%Mn-12.5%Cr) of martensitic structure upon quenching and of sorbitic structure upon high-temperature tempering has been investigated. Each of the states is shown to be represented by a particular stress-strain curve. The stress-strain curve for the steel in the martensitic state consists of a single linear-hardening stage, whereas in the sorbitic state, it exhibits a three-stage deformation pattern. The plastic flow of the examined material in the two states has been found to be of a localized character. The evolution of localized-strain center distributions follows the law of plastic flow, i.e., it depends on the deformation stages in the stress-strain curve. The fracture process is determined by the kinetics of the localized-strain centers in the final (prefracture) deformation stage in the stress-strain curve.
The paper presents a metallographic study of aluminum alloy welds produced by friction stir welding. The weld structure is described for two alloys: Al-Cu and Al-Mg. It is shown that friction stir welding provides a fine-grained structure of the weld. The phase composition of the weld metal for the studied alloys is defined. Differences in the structure and distribution of second-phase particles in the weld metal are shown. The weld zone of Al-Cu alloy consists of equal size grains, with intermetallic particles located along the grain boundaries. The weld structure of Al-Mg alloy is banded, with alternating layers consisting of different size grains.
The process of plastic deformation in ultrafine grain titanium is considered. Using the methods of speckle photography and X-ray diffractometry, the distributions of local strains and of local elastic distortions were examined for the test sample work. It is shown that the method of atomic-force microscopy can be used effectively for qualitative and quantitative assessment of ultrafine grain material structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.