Strongly correlated quantum systems are among the most intriguing and fundamental systems in physics. One such example is the Tonks-Girardeau gas, proposed about 40 years ago, but until now lacking experimental realization; in such a gas, the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. In order to minimize their mutual repulsion, the bosons are prevented from occupying the same position in space. This mimics the Pauli exclusion principle for fermions, causing the bosonic particles to exhibit fermionic properties. However, such bosons do not exhibit completely ideal fermionic (or bosonic) quantum behaviour; for example, this is reflected in their characteristic momentum distribution. Here we report the preparation of a Tonks-Girardeau gas of ultracold rubidium atoms held in a two-dimensional optical lattice formed by two orthogonal standing waves. The addition of a third, shallower lattice potential along the long axis of the quantum gases allows us to enter the Tonks-Girardeau regime by increasing the atoms' effective mass and thereby enhancing the role of interactions. We make a theoretical prediction of the momentum distribution based on an approach in which trapped bosons acquire fermionic properties, finding that it agrees closely with the measured distribution.
We discuss the regimes of quantum degeneracy in a trapped 1D gas and obtain the diagram of states. Three regimes have been identified: the Bose-Einstein condensation (BEC) regimes of a true condensate and quasicondensate, and the regime of a trapped Tonks gas (gas of impenetrable bosons). The presence of a sharp crossover to the BEC regime requires extremely small interaction between particles. We discuss how to distinguish between true and quasicondensates in phase coherence experiments.
We discuss the behavior of weakly bound bosonic dimers formed in a two-component cold Fermi gas at a large positive scattering length a for the interspecies interaction. We find the exact solution for the dimer-dimer elastic scattering and obtain a strong decrease of their collisional relaxation and decay with increasing a. The large ratio of the elastic to inelastic rate is promising for achieving Bose-Einstein condensation of the dimers and cooling the condensed gas to very low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.