The paper formulates the principles for shaping the design input, in particularly that the design input is not required to be similarto the real input. It is suggested that the seismic input should be set as a sinusoidal segment. This requires that the sinusoid be hazardous to the structure and causes it to reach the same limit state as a real earthquake. The amplitude of the sine wave is set equal to the average value of the peak boosts. The frequency of the exposure is set as dangerous for the structure to be designed and the duration is set according to the frequency of the exposure. The proposed seismic modelling approach makes it possible to assess the potential for progressive collapse and low-cycle fatigue of the designed structure. The model is based on statistical data on past earthquakes to estimate the average level of peak accelerations and the correlation between the prevailing period and the duration of the seismic event. The proposed input model greatly simplifies the computational assessment of seismic stability and the modeling of inputs on the seismic platform.
The paper deals with the task of setting the level of the design input for assessing the structure seismic resistance. An increase in the expected peak ground accelerations with the development of the earthquake engineering from 1 m/s2 to 7 m/s2 is noted. The absence of a correlation between the peak ground accelerations and the seismic action intensity, as well as the dependence of the peak ground accelerations on the action spectral composition, is explained. A method of determining the ground design acceleration using the standard seismic scale in force in Russia is shown. The illogicality of setting the design input according to of the Guidelines “Earthquake Engineering” in force in Russia is shown and ways of correcting the current situation are indicated. It is noted that to solve the problem of setting the design input, no seismic zoning maps are required. Information on seismic hazard can be represented by a single number characterizing the relationship between the intensity and repeatability of the action on the construction site. The relationship between the design accelerations stated in the «Earthquake Engineering» Guidelines and the peak ground accelerations in the «Seismic Intensity Scale» State Standard is explained. The approach described in the paper is the basis for input setting for performance-based designing.
Актуальность работы. В статье анализируются требования к расчетному сейсмическому воздействию. Прежде всего, это обеспечение запаса прочности сооружения при рассмотрении его предельных состояний. С этой точки зрение понятие похожести реального и расчетного воздействия весьма условны. По крайней мере, внешнего сходства реального и расчетного воздействия не требуется. Вместе с тем расчетное воздействие должно иметь ряд характеристик близких к реальным. Цель работы. В статье анализируется три группы характеристик: кинематические, энергетические и спектральные. Из кинематических характеристик детально проанализированы пиковые ускорения и коэффициент гармоничности. Установлена связь этих характеристик с преобладающим периодом воздействия на акселерограмме. Предложена новая модификация коэффициента гармоничности с учетом остаточных смещений после землетрясения. Методы работы. Для оценки пиковых ускорений предложена методика, основанная на шкале балльности и не требующая привлечения других нормативных документов и карт ОСР. Результаты работы. Отмечено, что кинематические характеристики являются основными для проведения силовых расчетов на действие проектного землетрясения. В качестве энергетических характеристик рассмотрены интенсивность по Ариасу, абсолютная кумулятивная скорость, плотность сейсмической энергии, среднеквадратичные ускорения и показатель Парка-Янга. Показано, что энергетические характеристики в рамках одного балла постоянны и не зависят от спектрального состава воздействия. Получены доверительные границы для оценки интенсивности по Ариасу и абсолютной кумулятивной скорости. Отмечено, что энергетические характеристики являются определяющими для расчетов конструкций за пределами упругости на действие максимального расчетного землетрясения. При анализе спектральных характеристик помимо традиционных спектров ответа рассмотрены спектр работы сил пластического деформирования и предложенный авторами спектр повреждаемости сооружения. Первый спектр важен для расчета упругопластических систем, а второй – для расчета адаптивных систем. При моделировании спектрального состава воздействия авторы считают необходимым исходить из использования резонансных для сооружения расчетных воздействий. Уход от этого принципа должен иметь веское обоснование сейсмологов, которые, наряду с инженерами-проектировщиками должны нести за это финансовую и юридическую ответственность. Relevance. The paper analyzes requirements for the design seismic input. First of all, it is ensuring the structure safety margin when considering its limiting states. From this point of view, the concept of similarity between real and design actions is rather indefinite. At least, no external similarity between the real and the design actions is required. At the same time, the design action should have a number of characteristics close to real ones. Aim. The paper analyzes three groups of such characteristics: kinematic, energy and spectral ones. Out of the kinematic characteristics, the peak accelerations and the harmonic coefficient are analyzed in detail. The relationship of these characteristics with the input predominant period on the accelerogram has been established. A new modification of the harmonic coefficient is proposed, taking into account the residual displacements after the earthquake. Methods. To assess peak accelerations, the authors proposed a method based on a scale of earthquake intensity, which does not require the use of other regulatory documents and seismic zoning maps. Results. It is noted that the kinematic characteristics are the main ones for carrying out force calculations of structures under the action of a design earthquake. The Arias intensity, absolute cumulative velocity, seismic energy density, root-mean-square acceleration and Park-Young indicator are considered as energy characteristics. It is shown that the energy characteristics in the frame of the same seismic intensity are constant and do not depend on the action spectral composition. Confidence limits for the Arias intensity and absolute cumulative velocity estimates were obtained. It is noted that the energy characteristics are important for calculations of structures out of elasticity area under maximum design earthquake. When considering the spectra, besides the response spectra, the spectrum of the work of plastic deformation forces and the spectrum of structure damageability are considered. The former spectrum is important for calculating elastoplastic systems, and the latter one is important for calculating adaptive systems. When modeling the action spectral composition, it is necessary to use resonant design input for the calculated structure. A contravention of this requirement must have a strong rationale for seismologists, who must bear financial and legal responsibility for this solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.