Abstract. A new error budget assessment of the global Mean Sea Level (MSL) determined by TOPEX/Poseidon and Jason-1 altimeter satellites between January 1993 and June 2008 is presented using last altimeter standards. We discuss all potential errors affecting the calculation of the global MSL rate. We also compare altimetry-based sea level with tide gauge measurements over the altimetric period. Applying a statistical approach, this allows us to provide a realistic error budget of the MSL rise measured by satellite altimetry. These new calculations highlight a reduction in the rate of sea level rise since 2005, by ∼2 mm/yr. This represents a 60% reduction compared to the 3.3 mm/yr sea level rise (glacial isostatic adjustment correction applied) measured between 1993 and 2005. Since November 2005, MSL is accurately measured by a single satellite, Jason-1. However the error analysis performed here indicates that the recent reduction in MSL rate is real.
Altimeter missions have provided accurate measurements of sea surface height since 1992 not only with TOPEX/Poseidon but also with Jason-1, Envisat, and recently Jason-2. The overall quality assessment of altimeter data can be performed by analyzing their internal consistency and the cross-comparison between all missions. In this study, in situ measurements are used as an external, independent reference to enable further quality assessment of the altimeter sea level. The most up-to-date altimeter data are assessed and compared with those from tide gauges and Argo profiling floats. The first focus is on detection of global and regional drifts in altimeter sea surface height compared with in situ measurements. A second point is that the method can assess the impact of new altimeter standards (e.g., orbit solution, instrumental correction, retracking algorithm) thanks to in situ observations. Finally, the study shows how multiple and reliable altimeter products are used to detect potential anomalies in tide gauges. The results demonstrate the close link between these three steps of the method: while the detection of altimeter drifts using in situ measurements is corrected by computing new altimeter standards whose impact can then be estimated, the improved altimeter sea level time series are used as input for controlling the quality of in situ observations.
Abstract. Technological advances in the recent satellite altimeter missions of Jason-2, SARAL/AltiKa and CryoSat-2 have improved their signal-to-noise ratio, allowing us to observe finer-scale ocean processes with along-track data. Here, we analyse the noise levels and observable ocean scales in the northwestern Mediterranean Sea, using spectral analyses of along-track sea surface height from the three missions. Jason-2 has a higher mean noise level with strong seasonal variations, with higher noise in winter due to the rougher sea state. SARAL/AltiKa has the lowest noise, again with strong seasonal variations. CryoSat-2 is in synthetic aperture radar (SAR) mode in the Mediterranean Sea but with lower-resolution ocean corrections; its statistical noise level is moderate with little seasonal variation. These noise levels impact on the ocean scales we can observe. In winter, when the mixed layers are deepest and the submesoscale is energetic, all of the altimeter missions can observe wavelengths down to 40-50 km (individual feature diameters of 20-25 km). In summer when the submesoscales are weaker, SARAL can detect ocean scales down to 35 km wavelength, whereas the higher noise from Jason-2 and CryoSat-2 blocks the observation of scales less than 50-55 km wavelength.This statistical analysis is completed by individual case studies, where filtered along-track altimeter data are compared with co-located glider and high-frequency (HF) radar data. The glider comparisons work well for larger ocean structures, but observations of the smaller, rapidly moving dynamics are difficult to co-locate in space and time (gliders cover 200 km in a few days, altimetry in 30 s). HF radar surface currents at Toulon measure the meandering Northern Current, and their good temporal sampling shows promising results in comparison to co-located SARAL altimetric currents. Techniques to separate the geostrophic component from the wind-driven ageostrophic flow need further development in this coastal band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.