Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shortening of the excitation wavelength and an increasing ratio of oxide to fluoride components, resulting in white color luminescence at a particular ratio of oxide to fluoride; with a quantum yield above 20%.
A model that postulates a mixture of scroll-shaped and concentric, cylindrical graphene sheets is proposed to explain the microstructure of graphite multishell nanotubes grown by arc discharge. The model is consistent with the observed occurrence of a relatively small number of different chiral angles within the same tubule. The model explains clustering in a natural way and is consistent with the observation of asymmetric (0002) lattice fringe patterns and with the occurrence of singular fringe spacings larger than c/2 (c is the c parameter of graphite) in such patterns. Anisotropic thermal contraction accounts for the 2 to 3 percent increase in the c parameter of nanotubes, compared with bulk graphite, but is too small to explain the singular fringe spacings. The model also explains the formation of multishell closure domes. Nucleation is attributed to the initial formation of a fullerene "dome."
The structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th 0.35 A 0.65 MnO 3 , where A is for the alkaline earth divalent cations ͑Ca, Ba, Sr͒, which are all characterized by the same large tolerance factor (tϭ0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance ͑MR͒ properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-site cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size ͑or t͒ is the relevant factor for generating spin-glass insulating manganites. ͓S0163-1829͑99͒01746-4͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.