This paper proposes a novel framework for tumor detection in Positron Emission Tomography (PET) images. A set of 8 second-order texture features obtained from the gray level cooccurrence matrix (GLCM) across 26 offsets, together with uptake value was used to construct a feature vector at each voxel in the data. Volume of Interest (VOI) samples from 42 images (7 patients with 6 gates each), marked by a radiologist, representing 5 distinct anatomy types and pathology were used to train a logit boost classifier. A ten-fold crossvalidation showed a true positive rate of 96%and a false positive rate of 8% for tumor classification. The test dataset consisted of 50 × 50 × 40 representative VOIs from gated PET images of 3 patients. The classifier was run on the test data, followed by an SUV-based thresholding and elimination of noise using connected component analysis. The method detected 10/12 (83%) tumors while detecting an average of 20 false positive structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.