This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4-9 cm, a generation time of 6-7 months and a life span of 2-3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.
In the period before spawning, freshwater crayfish females develop glair glands on the underside of the pleon. These glands produce the mucus for a gelatinous tentlike structure in which the eggs are fertilized and attached to the pleopods. Long-term observation of females of the sexually reproducing slough crayfish, Procambarus fallax, kept in captivity revealed that the glair glands developed in late winter and late summer of each year independently of the presence of males. In mated females, they secreted their contents shortly before spawning. In contrast, unmated females of slough crayfish did neither empty their glair glands nor spawn. Their glands persisted for an unusually long period of time and disappeared only during the next moult. Apparently, slough crayfish females use information on sperm availability to either spawn or save the resources. Females of marbled crayfish, Procambarus virginalis, a parthenogenetic all-female descendant of slough crayfish, developed glair glands in approximately the same periods of the year but generally spawned despite of the lack of males. These findings suggest that in marbled crayfish glair secretion and spawning is decoupled from mating. Therefore, the species pair P. fallax and P. virginalis seems to be particularly suitable to investigate the regulation of spawning in freshwater crayfish. How to cite this article: Vogt G. 2018. Glair glands and spawning in unmated crayfish: a comparison between gonochoristic slough crayfish and parthenogenetic marbled crayfish // Invert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.