Phorbol esters bind with high affinity to protein kinase C (PKC) isozymes as well as to two novel receptors, n-chimaerin and Unc-13. The cysteine-rich regions present in these proteins were identified as the binding sites for the phorbol ester tumor promoters and the lipophilic second messenger sn-diacylglycerol. coordination are critical for the interaction of the protein with the phorbol esters. In addition, mutations in several positions, including phenylalanine 3, tyrosine 8, proline 11, leucines 20, 21, and 24, tryptophan 21, glutamine 27, and valine 38 drastically reduced the interaction with the ligands. The effect of these mutations can be rationalized from the three-dimensional (NMR) structure of the cysteine-rich region. In particular, the C-terminal portion of the protein does not appear to be essential, and the loop comprising amino acids 20 to 28 is implicated in the binding activity.
The structures of a large number of HIV-1 integrase inhibitors have in common two aryl units separated by a central linker. Frequently at least one of these aryl moieties must contain 1,2-dihydroxy substituents in order to exhibit high inhibitory potency. The ability of o-dihydroxy-containing species to undergo in situ oxidation to reactive quinones presents a potential limitation to the utility of such compounds. The recent report of tetrameric 4-hydroxycoumarin-derived inhibitor 5 provided a lead example of an inhibitor which does not contain the catechol moiety. Compound 5 represents a large, highly complex yet symmetrical molecule. It was the purpose of the present study to determine the critical components of 5 and if possible to simplify its structure while maintaining potency. In the present study, dissection of tetrameric 5 (IC50 = 1.5 microM) into its constituent parts showed that the minimum active pharmacophore consisted of a coumarin dimer containing an aryl substituent on the central linker methylene. However, in the simplest case in which the central linker aryl unit consisted of a phenyl ring (compound 8, IC50 = 43 microM), a significant reduction in potency resulted by removing two of the original four coumarin units. Replacement of this central phenyl ring by more extended aromatic systems having higher lipophilicity improved potency, as did the addition of 7-hydroxy substituents to the coumarin rings. Combining these latter two modifications resulted in compounds such as 3,3'-(2-naphthalenomethylene)bis[4,7-dihydroxycoumarin] (34, IC50 = 4.2 microM) which exhibited nearly the full potency of the parent tetramer 5 yet were structurally much simpler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.