It is shown that the close connection between event horizons and thermodynamics which has been found in the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of information of the observer about the regions which he cannot see. Associated with the event horizon is a surface gravity v which enters a classical "first law of event horizons*' in a manner similar to that in which temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The derivation of these results involves abandoning the idea that particles should be defined in an observerindependent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observerdependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in the gravitational field.
We study the stabilization of scalars near a supersymmetric black hole horizon using the equation of motion of a particle moving in a potential and background metric. When the relevant 4-dimensional theory is described by special geometry, the generic properties of the critical points of this potential can be studied. We find that the extremal value of the central charge provides the minimal value of the BPS mass and of the potential under the condition that the moduli space metric is positive at the critical point. This is a property of a regular special geometry. We also study the critical points in all N≥2 supersymmetric theories. We relate these ideas to the Weinhold and Ruppeiner metrics introduced in the geometric approach to thermodynamics and used for study of critical phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.