[1] Gamma ray spectroscopy data acquired by Lunar Prospector are used to determine global maps of the elemental composition of the lunar surface. Maps of the abundance of major oxides, MgO, Al 2 O 3 , SiO 2 , CaO, TiO 2 , and FeO, and trace incompatible elements, K and Th, are presented along with their geochemical interpretation. Linear spectral mixing is used to model the observed gamma ray spectrum for each map pixel. The spectral shape for each elemental constituent is determined by a Monte Carlo radiation transport calculation. Linearization of the mixing model is accomplished by scaling the spectral shapes with lunar surface parameters determined by neutron spectroscopy, including the number density of neutrons slowing down within the surface and the effective atomic mass of the surface materials. The association of the highlands with the feldspathic lunar meteorites is used to calibrate the mixing model and to determine backgrounds. A linear least squares approach is used to unmix measured spectra to determine the composition of each map pixel. The present analysis uses new gamma ray production cross sections for neutron interactions, resulting in improved accuracy compared to results previously submitted to the Planetary Data System. Systematic variations in lunar composition determined by the spectral unmixing analysis are compared with the lunar soil sample and meteorite collections. Significant results include improved accuracy for the abundance of Th and K in the highlands; identification of large regions, including western Procellarum, that are not well represented by the sample collection; and the association of relatively high concentrations of Mg with KREEP-rich regions on the lunar nearside, which may have implications for the concept of an early magma ocean.
Global distributions of thermal, epithermal, and fast neutron fluxes have been mapped during late southern summer/northern winter using the Mars Odyssey Neutron Spectrometer. These fluxes are selectively sensitive to the vertical and lateral spatial distributions of H and CO2 in the uppermost meter of the martian surface. Poleward of +/-60 degrees latitude is terrain rich in hydrogen, probably H2O ice buried beneath tens of centimeter-thick hydrogen-poor soil. The central portion of the north polar cap is covered by a thick CO2 layer, as is the residual south polar cap. Portions of the low to middle latitudes indicate subsurface deposits of chemically and/or physically bound H2O and/or OH.
[1] Neutron spectroscopy data acquired by Mars Odyssey are analyzed to determine the abundance and depth of near-surface water ice as a function of latitude in the southern hemisphere as well as the inventory of CO 2 in the south polar residual cap. The surface is modeled as a semi-infinite, water-rich permafrost layer covered by desiccated material, which is consistent with theoretical models of ground ice stability. Latitude-dependent parameters, water abundance and depth, are determined from zonally averaged neutron counting data. Spatial mixing of the output of neutrons from regions within the footprint of the spectrometer is modeled, and asymmetrical features such as the residual cap are included in the analysis. Absorption of thermal neutrons by major elements other than hydrogen is found to have a significant influence on the determination of water abundance. Poleward of À60°, the water-rich layer contains 60% ± 10% water by weight (70% to 85% by volume) and is covered by less than 15 g/cm 2 ± 5 g/cm 2 of dry material. The volume fraction of water is generally higher than can be accommodated in the pore space of surface soils, which implies that water vapor diffusion processes alone cannot explain the observations. Alternatives for the formation of the water-rich layer are discussed. Results of our analysis of the residual-cap CO 2 inventory support conclusions that the atmosphere is not buffered by a larger reservoir of surface CO 2 at the poles and that Mars' total CO 2 inventory is well represented by the present atmospheric mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.