Abstract. Previous experimental studies of fibre pull-out test show two dangerous points on the interface. Failure usually occurs at the bonded end of the fibre (Point A) or at the entry point on the surface of the matrix (Point E). Both points have different singular stress fields which causes crack initiation, crack propagation, and final failure. In this paper, intensity of singular stress fields (ISSF) at the fibre bonded end A and ISSF at the intersection point E of the fibre and the surface are discussed. The analysis method focuses on calculating the finite element method (FEM) stress radio by using a reference model and an unknown model. In the unknown model and the reference model, same FEM mesh pattern is applied. To analyse the ISSF at A, the body force method solution is used as the reference model. To analyse the ISSF at E, the reciprocal work contour integral method (RWCIM) solution is used as the reference model. Then, the two ISSFs are compared and discussed by varying the fibre embedded length . When is shorter, the singular stress at A is larger than the singular stress at E. When is longer, the singular stress at E is larger than the ISSF at A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.