SUMMARYSolutions for the displacements caused by dynamic loads in a viscoelastic transversely-isotropic medium are derived. The medium extends horizontally to infinity, but is bounded below by a rigid base. Stratification of the medium presents no difficulties. The medium is discretized in the vertical direction only; discretization in the horizontal direction is obviated by use of analytical solutions to the equations of motion.Application of the displacement solutions to soil-structure interaction is illustrated. A soil flexibility matrix (and hence, a stiffness matrix) for a surface foundation follows directly from the displacement solutions. A simple modification to obtain the soil stiffness for an embedded foundation of arbitrary geometry is described. Stiffnesses of rigid surface and embedded foundations are computed and compared with previously published results. In addition, the dynamic stiffness of a rigid surface foundation on a soil layer with linearly increasing shear modulus is compared to that for a homogeneous soil layer. A reduction in radiation damping is found to result from the inhomogeneity.
SUMMARYThe effect of the base mat flexibility on seismic soil-structure interaction is studied for an axisymmetric reactor building on a soft and a stiff soil. As a preliminary step, the dynamic response of a massless flexible circular plate with two rigid concentric walls, through which the plate is loaded, is analysed.The response of the plate is found to depend on the plate flexibility, the load distribution and the frequency of excitation. For practical, in-phase load distributions, the response of the flexible plate is close to that of a rigid plate at low frequencies, but deviates at high frequencies.including the flexibility of the mat has hardly any effect on the frequencies and damping of the fundamental rocking and vertical modes of the reactor building. This is the case for soft and stiff soil conditions. However, the flexibility of the mat strongly affects the first and higher structural deformation modes. In both cases the amount of energy dissipated in the soil is a significant percentage of the total dissipation, and is essentially unaffected by the mat flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.