The use of biofuel is one method for limiting the harmful impact of diesel engines on the environment. It is also a way of gradually becoming less dependent on the depleting petroleum resources. New resources for producing biodiesel are currently being sought. The authors produced esters from animal fat waste, obtaining a fuel that can power diesel engines and identifying a way to utilise unnecessary waste. The animal fat methyl ester (AME) was produced using a reactor constructed for non-industrial ester production. The aim underlying this paper was to determine whether a diesel engine can be fuelled with AME biodiesel and to test this fuel’s impact on exhaust gas composition and fuel consumption. Fuelling a Perkins 1104D-44TA engine with AME biodiesel led to a reduction in the smoke opacity of the exhaust gas as well as in carbohydrate, particulate matter, and carbon monoxide concentrations. The carbon dioxide concentrations were similar for biodiesel and diesel fuel. Slight increases in nitrogen oxides concentrations and brake-specific fuel consumption were found for AMEs. An engine can be fuelled with AME biodiesel, but it is necessary to improve its low-temperature properties.
Direct hydroconversion of vegetable oils (by a one-stage process) and hydroconversion of vegetable oil zeoformates (by a two-stage process) lead to hydroraffinates that contain trace elements. The concentrations of these trace elements must be below the inductively coupled plasma optical emission spectrometry determination limit, in accordance with the recommendations and requirements specified in the relevant legislation (Worldwide Fuel Charter). In this work, it was found that some trace elements (Na, Ca, Mg, and P) are deposited on the catalyst surface during the initial zeoforming of vegetable oils. At the same time, other ions (Al) can be removed by elution from the surface of the zeolite catalyst. During hydroconversion, most of the trace elements present in vegetable oils and zeoformates pass into the aqueous phase.
Climate changes caused by the greenhouse effect make it necessary to look for new sources of energy. One of them is waste of a biological origin. They are often difficult to dispose of and such a process can be expensive. Increasingly, they are used to produce biofuels that can replace petroleum-based fuels. They are also an alternative to food-based biofuels. The aim of the work was to propose a method of using fatty waste generated in a plant dealing with tanning animal skins and to evaluate the properties of the produced biofuels. The authors decided to use this waste to produce biodiesel. A patented reactor and technology developed by one of the co-authors was used for this purpose. Two alcohols, butyl and methyl, were used to produce esters in the transesterification process. Animal fats butyl esters (AFBE) and animal fats methyl esters (AFME) have been produced. A high efficiency of the transesterification process was obtained. It amounted to 99.2 (wt.%) for AFME and 98.9 (wt.%) for AFBE. The physicochemical properties of AFBE and AFME biodiesels, diesel fuel, and mixtures of these biodiesels and diesel fuel were tested. Most of the tested properties of AFBE were more favourable than those of AFME. The produced AFBE in relation to AFME was characterized by better cetane number, heat of combustion and calorific value, density, dynamic viscosity, kinematic viscosity, and flash point. For example, the kinematic viscosity for AFBE was 3.6 mm2/s and for AFME 4.1 mm2/s. In contrast, the calorific value of AFBE biodiesel was 39.2 MJ/kg, and that of AFME biodiesel was 38.4 MJ/kg. The use of butanol from the point of view of the properties of the produced biodiesel turned out to be more advantageous in relation to methanol. Due to the fact that the production uses waste fat, the produced biodiesels can be regarded as second-generation biofuels. Producing biodiesel from waste is a way to utilize waste and is beneficial in terms of environmental protection. It can be a way to increase the share of biofuels in the energy balance of regions where large amounts of fat waste products of animal origin are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.