SUMMARYAnalogue and microwave design requires accurate and reliable simulation tools and methods to meet the design specifications. System properties are often measured in the steady state. Well-suited algorithms for calculating the steady state can be classified into shooting methods, finite difference methods and the harmonic balance (HB) technique. Harmonic balance is a frequency domain method which approaches the problem of finding the steady state by a trigonometric polynomial. Depending on the size of the circuit and the number of Fourier coefficients of the polynomial, the resulting system o f non-linear equations can become very large. These non-linear equations are solved by using Newton's method.The sparse linear system arising from Newton's method can be solved by direct, stationary or non-stationary iterative solvers. Iterative methods are normally easy to parallelize or vectorize.In this paper a tool for the simulation of the steady state of electronic circuits is presented. The steady state is calculated using the harmonic balance technique. Non-linear equations are solved by Newton's method and linear equations by preconditioned non-stationary iterative solvers (CGS, Bi-CGSTAB, BiCGSTAB(2), TFQMR). The run time is reduced dramatically, by up to an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.