Context Pretreatment with α-adrenergic receptor blockers is recommended to prevent hemodynamic instability during resection of a pheochromocytoma or sympathetic paraganglioma (PPGL). Objective To determine which type of α-adrenergic receptor blocker provides the best efficacy. Design Randomized controlled open-label trial (PRESCRIPT; ClinicalTrials.gov NCT01379898) Setting Multicenter study including 9 centers in The Netherlands. Patients 134 patients with nonmetastatic PPGL. Intervention Phenoxybenzamine or doxazosin starting 2 to 3 weeks before surgery using a blood pressure targeted titration schedule. Intraoperative hemodynamic management was standardized. Main Outcome Measures Primary efficacy endpoint was the cumulative intraoperative time outside the blood pressure target range (ie, SBP >160 mmHg or MAP <60 mmHg) expressed as a percentage of total surgical procedure time. Secondary efficacy endpoint was the value on a hemodynamic instability score. Results Median cumulative time outside blood pressure targets was 11.1% (interquartile range [IQR]: 4.3–20.6] in the phenoxybenzamine group compared to 12.2% (5.3–20.2)] in the doxazosin group (P = .75, r = 0.03). The hemodynamic instability score was 38.0 (28.8–58.0) and 50.0 (35.3–63.8) in the phenoxybenzamine and doxazosin group, respectively (P = .02, r = 0.20). The 30-day cardiovascular complication rate was 8.8% and 6.9% in the phenoxybenzamine and doxazosin group, respectively (P = .68). There was no mortality after 30 days. Conclusions The duration of blood pressure outside the target range during resection of a PPGL was not different after preoperative treatment with either phenoxybenzamine or doxazosin. Phenoxybenzamine was more effective in preventing intraoperative hemodynamic instability, but it could not be established whether this was associated with a better clinical outcome.
SummaryThe dye indocyanine green is familiar to anaesthetists, and has been studied for more than half a century for cardiovascular and hepatic function monitoring. It is still, however, not yet in routine clinical use in anaesthesia and critical care, at least in Europe. This review is intended to provide a critical analysis of the available evidence concerning the indications for clinical measurement of indocyanine green elimination as a diagnostic and prognostic tool in two areas: its role in peri-operative liver function monitoring during major hepatic resection and liver transplantation; and its role in critically ill patients on the intensive care unit, where it is used for prediction of mortality, and for assessment of the severity of acute liver failure or that of intra-abdominal hypertension. Although numerous studies have demonstrated that indocyanine green elimination measurements in these patient populations can provide diagnostic or prognostic information to the clinician, 'hard' evidence -i.e. high-quality prospective randomised controlled trials -is lacking, and therefore it is not yet time to give a green light for use of indocyanine green in routine clinical practice.
Shock is defined as global tissue hypoxia secondary to an imbalance between systemic oxygen delivery and oxygen demand. Venous oxygen saturations represent this relationship between oxygen delivery and oxygen demand and can therefore be used as an additional parameter to detect an impaired cardiorespiratory reserve. Before appropriate use of venous oxygen saturations, however, one should be aware of the physiology. Although venous oxygen saturation has been the subject of research for many years, increasing interest arose especially in the past decade for its use as a therapeutic goal in critically ill patients and during the perioperative period. Also, there has been debate on differnces between mixed and central venous oxygen saturation and their interchangeability. Both mixed and central venous oxygen saturation are clinically useful but both variables should be used with insightful knowledge and caution. In general, low values warn the clinician about cardiocirculatory or metabolic impairment and should urge further diagnostics and appropriate action, whereas normal or high values do not rule out persistent tissue hypoxia. The use of venous oxygen saturations seems especially useful in the early phase of disease or injury. Whether venous oxygen saturations should be measured continuously remains unclear. Especially, continuous measurement of central venous oxygen saturation as part of the treatment protocol has been shown a valuable strategy in the emergency department and in cardiac surgery. In clinical practice, venous oxygen saturations should always be used in combination with vital signs and other relevant endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.