Allergic asthma is characterized by airway hyperresponsiveness, eosinophilia, and mucus accumulation and is associated with increased IgE concentrations. We demonstrate here that peroxisome proliferator–activated receptors (PPARs), PPAR-α and PPAR-γ, which have been shown recently to be involved in the regulation of various cell types within the immune system, decrease antigen-induced airway hyperresponsiveness, lung inflammation, eosinophilia, cytokine production, and GATA-3 expression as well as serum levels of antigen-specific IgE in a murine model of human asthma. In addition, we demonstrate that PPAR-α and -γ are expressed in eosinophils and their activation inhibits in vitro chemotaxis and antibody-dependent cellular cytotoxicity. Thus, PPAR-α and -γ (co)agonists might be of therapeutic interest for the regulation of allergic or inflammatory reactions by targeting both regulatory and effector cells involved in the immune response.
To investigate the roles of tumor necrosis factor (TNF) and lymphotoxin (LT)-alpha in the development and function of the immune system, the Tnf and Ltalpha genes were simultaneously inactivated in mice by homologous recombination. These mutant mice are highly susceptible to Listeria monocytogenes infection and resistant to endotoxic shock induced by the combined administration of D-galactosamine (D-GaIN) and lipopolysaccharide (LPS). Their splenic microarchitecture is disorganized, characterized by the loss of the clearly defined marginal zone, ill defined T and B cell areas, and absence of MAdCAM-1 and reduced ICAM-1, VCAM-1 and Mac-1 expression. They are devoid of peripheral lymph nodes and Peyer's patches, and show a strong reduction of IgA+ plasma cells in the intestinal lamina propria. The alymphoplasia is accompanied by a marked B lymphocytosis and reduced basal lg levels. Ig depositions in the renal glomerulus and a strong up-regulation of MHC class I antigen expression on endothelial cells of different tissues are observed. The primary humoral immune response towards sheep red blood cells reveals a defective IgG isotype switch, while that against vesicular stomatitis virus is normal. The cytotoxic T cell responses are attenuated, although still effective, against vaccinia, lymphocytic choriomeningitis virus (LCMV-ARM) and LCMV-WE. In conclusion, the combined inactivation of Tnf and Ltalpha confirms their essential role in the normal development and function of the immune system.
Eosinophils are the source of various immunoregulatory cytokines, but the membrane molecules involved in their secretion have not been clearly identified. Here we show that peripheral blood eosinophils from hypereosinophilic patients could express membrane CD86 but not CD80. The T cell costimulatory molecule CD28 is also detected on the eosinophil surface. CD28 ligation but not CD86 ligation resulted in interleukin (IL)-2 and interferon (IFN)-γ secretion by eosinophils, whereas IL-4, IL-5, and IL-10 were not detected. In contrast to T cells requiring two signals for effective stimulation, CD28 ligation alone was sufficient for optimal eosinophil activation. Eosinophil-derived IL-2 and IFN-γ were biologically active, as supernatants from anti-CD28–treated cells were able to induce CTLL-2 proliferation and major histocompatibility complex class II expression on the colon carcinoma cell line Colo 205, respectively. Addition of secretory immunoglobulin (Ig)A–anti-IgA complexes, which could induce the release of IL-10, very significantly inhibited both CD28-mediated IL-2 and IFN-γ release. These results suggest that the release of type 1 (IFN-γ and IL-2) versus type 2 cytokines by eosinophils is not only differential but also dependent on cross-regulatory signals. They confirm that through activation of costimulatory molecules, eosinophils could function as an immunoregulatory cell involved in the release of both type 1 and type 2 cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.