Field of High Energy Density (HED) physics is very important from the scientific as well as technological point of view and due to these reasons, it has been an area of very active research over the past many decades. Static as well as dynamic experimental configurations have been used to study this subject. Recently, a new approach that involves isochoric and uniform heating of matter by intense ion beams, has been proposed to generate HED sates in the laboratory. Extensive theoretical work has been carried out to propose various experiment designs employing this technique. In this paper we describe one of these proposed experiments that can be used to study planetary interiors in the laboratory and is named LAPLAS (LAboratory PLAnetary Sciences). Detailed analysis of implosion and hydrodynamic stability of the target is presented.
This paper presents a review of the theoretical work that has resulted in a scientific proposal on studies of HighEnergy-Density (HED) states in matter using intense beams of energetic heavy ions that will be available at the future Facility for Antiprotons and Ion Research (FAIR) at Darmstadt [W.F. Henning, Nucl. Inst. Meth B 24 (2003) [725][726][727][728][729]. The proposal is named HEDgeHOB that stands for High Energy Density Matter Generated by Heavy Ion Beams. Two experimental schemes have been worked out for the HEDgeHOB experimental proposal, namely, HIHEX and LAPLAS. The first scheme allows for studies of HED states by isochoric and uniform heating of matter by an intense heavy ion beam that is followed by isentropic expansion of the heated material. Numerical simulations have shown that using the beam parameters that will be available at the FAIR, one can access all the interesting physical states of HED matter including an expanded hot liquid state, twophase liquid-gas region, critical point parameters and strongly coupled plasmas for all the materials of interest. The second scheme involves a low-entropy compression of a test material like hydrogen that is enclosed in a cylindrical shell of a high-Z material like gold or lead. The target can be driven by a hollow or a circular beam. This compression scheme relies on multiple shock reflection between the hydrogen-gold (lead) boundary and the cylinder axis. The hydrodynamic stability of the LAPLAS target has also been analyzed that shows that the implosion is completely stable to Rayleigh-Taylor and Richtmyer-Meshkov instabilities. LAPLAS implosion using a hollow beam is suitable for studying the problem of hydrogen metallization whereas the one employing a circular focal spot leads to physical conditions that are expected to exist in the interiors of the giant planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.